GMA Round 1 数列求和(Hard)
数列求和(Hard)
在数列{$a_n$}中,$a_1=-\frac{1}{4}$,$\frac{1}{a_{n+1}}+\frac{1}{a_n}=\begin{cases}-3(n为偶数)\\3(n为奇数) \end{cases}$
当n趋近于正无穷时,求{$a_n$}的前n项和。
由泰勒公式得
$$\frac{1}{1+x^3}=1-x^3+x^6-x^9+……+(-1)^nx^{3n}+……(x\in(-1,1))$$
对两端从0到t进行积分得
$$\int_{0}^{t}\frac{1}{1+x^3}dx$$ $$=\int_{0}^{t}dx-\int_{0}^{t}x^3dx+……$$ $$=t-\frac{t^4}{4}+\frac{t^7}{7}-……+(-1)^n\frac{t^{3n+1}}{3^n+1}+……$$
又
$$\int_{0}^{t}dx=\frac{1}{3}ln\frac{t+1}{\sqrt{t^2-t+1}}+\frac{\sqrt{3}}{3}arctan\frac{2\sqrt{3}t-\sqrt{3}}{3}+\frac{\sqrt{3}}{18}\pi$$
由莱布尼茨审敛法知$\sum_{n=0}^{\infty}(-1)^n\frac{1}{3n+1}$收敛
令t=1得
$$\sum_{n=1}^{\infty}a_i=\sum_{n=1}^{\infty}(-1)^n\frac{1}{3n+1}=\frac{1}{3}ln2+\frac{\sqrt{3}}{9}\pi-1$$
定位:困难题、超纲题