bzoj:1621 [Usaco2008 Open]Roads Around The Farm分岔路口
Description
约翰的N(1≤N≤1,000,000,000)只奶牛要出发去探索牧场四周的土地.她们将沿着一条路走,一直走到三岔路口(可以认为所有的路口都是这样的).这时候,这一群奶牛可能会分成两群,分别沿着接下来的两条路继续走.如果她们再次走到三岔路口,那么仍有可能继续分裂成两群继续走. 奶牛的分裂方式十分古怪:如果这一群奶牛可以精确地分成两部分,这两部分的牛数恰好相差K(1≤K≤1000),那么在三岔路口牛群就会分裂.否则,牛群不会分裂,她们都将在这里待下去,平静地吃草. 请计算,最终将会有多少群奶牛在平静地吃草.
Input
两个整数N和K.
Output
最后的牛群数.
Sample Input
6 2
INPUT DETAILS:
There are 6 cows and the difference in group sizes is 2.
INPUT DETAILS:
There are 6 cows and the difference in group sizes is 2.
Sample Output
3
OUTPUT DETAILS:
There are 3 final groups (with 2, 1, and 3 cows in them).
6
/ \
2 4
/ \
1 3
OUTPUT DETAILS:
There are 3 final groups (with 2, 1, and 3 cows in them).
6
/ \
2 4
/ \
1 3
直接暴力递归上啊,反正0MS
Pascal大法好,瞬间刷上#4
不过前面88KB是怎么做到的……
#include<cstdio> using namespace std; int n,m; int a(int n){ if (n>m&&(n-m)%2==0) return a((n-m)/2)+a((n+m)/2);return 1; } int main(){ scanf("%d%d",&n,&m); printf("%d\n",a(n)); }
var n,m:longint; function f(n:longint):longint begin if (n>m)and((n-m) mod 2=0) then exit(f((n-m) div 2)+f((n+m) div 2));exit(1); end; begin read(n,m); write(f(n)); end.