机器学习(03)——技术栈

(这幅图来自https://github.com/apachecn/ai-roadmap/tree/master/ds-metromap

从图中可以看到,想要成为一名资深的数据科学家,需要掌握的知识非常多,不过只是入门机器学习,并不需要所有东西都要会,都精通的话就是专家了。

通过这幅图,我们可以大概看到自己的学习路线,内容是非常多,不过好多是概念性的、理论性的知识,只需要百度或谷歌一下,就可以找到答案了,而对于这种常识性的概念知识,只需要知道就足够了。

对于初学者来说,我觉只需要了解部分基础知识、一些统计常识、有一定的编程基础、部分可视化知识已经足够了,而机器学习模块是我们将要学习的模块而已。

而中级人员的提升,则需要对初学者部分进行巩固扩展外,还需要增加数学基础、机器学习算法、大数据、数据提取和规整(对特征码的抽象、设计与清洗的加深学习)等内容的学习,懂得运行大数据知识,通过分布式计算来提升机器学习性能。

而高级人员,在精通初中级人员的知识外,还需要往专业领域深入发展,比如深度学习、NLP、人脸识别、图像识别、自然语言处理、机器人、语音识别等等。

 

posted @   AllEmpty  阅读(759)  评论(0编辑  收藏  举报
编辑推荐:
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
阅读排行:
· 地球OL攻略 —— 某应届生求职总结
· 周边上新:园子的第一款马克杯温暖上架
· Open-Sora 2.0 重磅开源!
· .NET周刊【3月第1期 2025-03-02】
· [AI/GPT/综述] AI Agent的设计模式综述
点击右上角即可分享
微信分享提示