自然数幂和&伯努利数(Bernoulli)

二项式定理求自然数幂和

由二项式定理展开得

\[(n+1)^{k+1}-n^{k+1}=\binom {k+1}1n^k+\binom {k+1}2n^{k-1}+\cdots+\binom {k+1}kn+1 \]

那么,对于所有的\(n=1,2,3,\cdots\)累加得到

\[(n+1)^{k+1}-1=\binom{k+1}1\sum_{i=1}^ni^k+\binom{k+1}2\sum_{i=1}^ni^{k-1}+\cdots+\binom {k+1}k\sum_{i=1}^ni+n \]

进一步得到

\[\sum_{i=1}^ni^k=\frac1{k+1}[(n+1)^{k+1}-(\binom{k+1}2\sum_{i=1}^ni^{k-1}+\cdots+\binom {k+1}k\sum_{i=1}^ni+n+1)] \]

\(S(n,k)=\sum_{i=1}^ni^k\),可以得到

\[S(n,k)=\frac1{k+1}[(n+1)^{k+1}-(\binom{k+1}2S(n,k-1)+\cdots+\binom {k+1}kS(n,1)+n+1)] \]

\(k==1\),有\(S(n,1)=\frac{n\cdot(n+1)}{2}\)

加入记忆化即可。

伯努利数

\[\sum_{i=1}^ni^k=\frac{1}{k+1}\sum_{i=1}^{k+1}\binom {k+1}iB_{k+1-i}(n+1)^i \]

伯努利数满足\(B_0=1\),且有

\[\sum_{k=0}^n\binom{n+1}kB_k=0 \]

那么有

\[B_n=-\frac1{n+1}(\binom{n+1}0B_0+\binom{n+1}1B_1+\dots+\binom{n+1}{n-1}B_{n-1}) \]

这样就可以\(O(n^2)\)预处理出伯努利数。

还可以对\(B_i\)构建指数型生成函数

\[B(x)=\sum_{i=0}^\infty \frac{B_i}{i!}x^i \]

经过我也不懂得化简得到

\[\begin{split} B(x)=\frac{x}{e^x-1}\\ B[x]=ifac[x+1] \end{split} \]

可以利用多项式求逆在\(O(n\log n)\)计算伯努利数。

例题 51nod 1228 序列求和

#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=10005,K=2005,mod=1e9+7;
using namespace std;
inline LL Getint(){register LL x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
int inv[N],fac[N],ifac[N],B[N];
int C(int n,int m){
	if(n<m)return 0;
	return (LL)fac[n]*ifac[m]%mod*ifac[n-m]%mod;
}
int S(LL n,int k){
	int ret=0;
	LL ori=(n+1)%mod,fac=ori;
	for(int i=1;i<=k+1;i++,fac=(LL)fac*ori%mod)
		ret=(ret+(LL)C(k+1,i)*B[k+1-i]%mod*fac)%mod;
	return (LL)(ret+mod)%mod*inv[k+1]%mod;
}
int main(){
	inv[1]=fac[0]=ifac[0]=1;
	for(int i=2;i<=K;i++)inv[i]=(LL)inv[mod%i]*(mod-mod/i)%mod;
	for(int i=1;i<=K;i++)fac[i]=(LL)fac[i-1]*i%mod;
	for(int i=1;i<=K;i++)ifac[i]=(LL)ifac[i-1]*inv[i]%mod;
	B[0]=1;
	for(int i=1;i<=K;i++){
		for(int j=0;j<i;j++)
			B[i]=(B[i]-(LL)B[j]*C(i+1,j))%mod;
		B[i]=(LL)B[i]*inv[i+1]%mod;
	}
	int T=Getint();
	while(T--){
		LL n=Getint(),k=Getint();
		cout<<S(n,k)<<'\n';
	}
	return 0;
}
posted @ 2019-01-03 18:35  Emiya_2020  阅读(919)  评论(0编辑  收藏  举报