【BZOJ4805】欧拉函数求和
题面
Description
给出一个数字N,求\(\sum\limits_{i=1}^n\varphi(i)\)i,1<=i<=N
Input
正整数N。N<=2*10^9
Output
输出答案。
Sample Input
10
Sample Output
32
题目分析
杜教筛模板题。
由\((1*\varphi)=Id\),取\(g(x)=1\)。
\[S(n)=\frac {n \cdot (n+1)}2-\sum_{i=2}^nS(\frac ni)
\]
代码实现
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#include<map>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=1e7+5,M=1e7;
using namespace std;
inline int Getint(){register int x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
bool vis[N];
int prime[N];
LL phi[N];
map<LL,LL>sphi;
LL Sphi(int x){
if(x<=M)return phi[x];
if(sphi[x])return sphi[x];
LL ret=1ll*x*(x+1)/2;
for(int l=2,r;l<=x;l=r+1){
r=x/(x/l);
ret-=(r-l+1)*Sphi(x/l);
}
return sphi[x]=ret;
}
int main(){
phi[1]=1;
for(int i=2;i<=M;i++){
if(!vis[i])prime[++prime[0]]=i,phi[i]=i-1;
for(int j=1;j<=prime[0]&&1ll*prime[j]*i<=M;j++){
vis[i*prime[j]]=1;
if(i%prime[j]==0){
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
phi[i*prime[j]]=phi[i]*phi[prime[j]];
}
}
for(int i=2;i<=M;i++)phi[i]+=phi[i-1];
int n=Getint();
cout<<Sphi(n);
return 0;
}