【BZOJ4805】欧拉函数求和

题面

Description

给出一个数字N,求\(\sum\limits_{i=1}^n\varphi(i)\)i,1<=i<=N

Input

正整数N。N<=2*10^9

Output

输出答案。

Sample Input

10

Sample Output

32

题目分析

杜教筛模板题。

\((1*\varphi)=Id\),取\(g(x)=1\)

\[S(n)=\frac {n \cdot (n+1)}2-\sum_{i=2}^nS(\frac ni) \]

代码实现

#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#include<map>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=1e7+5,M=1e7;
using namespace std;
inline int Getint(){register int x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
bool vis[N];
int prime[N];
LL phi[N];
map<LL,LL>sphi;
LL Sphi(int x){
	if(x<=M)return phi[x];
	if(sphi[x])return sphi[x];
	LL ret=1ll*x*(x+1)/2;
	for(int l=2,r;l<=x;l=r+1){
		r=x/(x/l);
		ret-=(r-l+1)*Sphi(x/l);
	}
	return sphi[x]=ret;
} 
int main(){
	phi[1]=1;
	for(int i=2;i<=M;i++){
		if(!vis[i])prime[++prime[0]]=i,phi[i]=i-1;
		for(int j=1;j<=prime[0]&&1ll*prime[j]*i<=M;j++){
			vis[i*prime[j]]=1;
			if(i%prime[j]==0){
				phi[i*prime[j]]=phi[i]*prime[j];
				break;
			}
			phi[i*prime[j]]=phi[i]*phi[prime[j]];
		}
	}
	for(int i=2;i<=M;i++)phi[i]+=phi[i-1];
	int n=Getint(); 
	cout<<Sphi(n); 
	return 0;
}
posted @ 2018-11-24 11:14  Emiya_2020  阅读(520)  评论(0编辑  收藏  举报