验证码之滑块验证码
class SlideCrack(object): def __init__(self, gap, bg): """ init code :param gap: 缺口图片 :param bg: 背景图片 :param out: 输出图片 """ self.front = gap self.bg = bg @staticmethod def clear_white(img): # 清除图片的空白区域,这里主要清除滑块的空白 img_data = base64.b64decode(img) img_array = np.fromstring(img_data, np.uint8) img = cv2.imdecode(img_array, cv2.COLOR_RGB2BGR) rows, cols, channel = img.shape min_x = 255 min_y = 255 max_x = 0 max_y = 0 for x in range(1, rows): for y in range(1, cols): t = set(img[x, y]) if len(t) >= 2: if x <= min_x: min_x = x elif x >= max_x: max_x = x if y <= min_y: min_y = y elif y >= max_y: max_y = y img1 = img[min_x:max_x, min_y: max_y] return img1 def template_match(self, tpl, target): th, tw = tpl.shape[:2] result = cv2.matchTemplate(target, tpl, cv2.TM_CCOEFF_NORMED) # 寻找矩阵(一维数组当作向量,用Mat定义) 中最小值和最大值的位置 min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result) tl = max_loc br = (tl[0] + tw, tl[1] + th) # 绘制矩形边框,将匹配区域标注出来 # target:目标图像 # tl:矩形定点 # br:矩形的宽高 # (0,0,255):矩形边框颜色 # 1:矩形边框大小 cv2.rectangle(target, tl, br, (0, 0, 255), 2) return tl @staticmethod def image_edge_detection(img): edges = cv2.Canny(img, 100, 200) return edges def discern(self): img1 = self.clear_white(self.front) img1 = cv2.cvtColor(img1, cv2.COLOR_RGB2GRAY) slide = self.image_edge_detection(img1) img_data = base64.b64decode(self.bg) img_array = np.fromstring(img_data, np.uint8) back = cv2.imdecode(img_array, cv2.COLOR_RGB2BGR) back = self.image_edge_detection(back) slide_pic = cv2.cvtColor(slide, cv2.COLOR_GRAY2RGB) back_pic = cv2.cvtColor(back, cv2.COLOR_GRAY2RGB) pos = self.template_match(slide_pic, back_pic) # 输出横坐标, 即 滑块在图片上的位置 return pos