通往奥格瑞玛的道路

通往奥格瑞玛的道路

洛谷P1462 通往奥格瑞玛的道路

题目简述

本题的描述还是很清晰的,完全可以直接传送门去看

但是唯一想要强调的是:初看本题可能会像我一样认为是点权+边权处理然后直接跑最短路...然鹅并不是这样


思路分析

我以为的点权其实是经过该城市的费用,是最终的答案

我以为的边权其实是经过该条边的流血量,是用来判断某一条从\(1\)\(N\)的路径是否合法

什么意思?

就是要求我们找到一条路,满足:

  1. 这条路上所有的流血量之和必须<\(b\)(给定的初始血量)

  2. 这条路上经过的所有城市中最大费用值最小

又是相当于同时维护两个东西,难搞

之前有些题 中,我们会选择“枚举其中一个再求解另外一个的思路

  • 那这道题是否也能这样做呢?

答案是肯定的,但是面对这道题的数据范围:\(ci≤1000000000,fi≤1000000000\)

  • 单纯的枚举肯定是会被T飞的,那我们不妨再深入思考一下:有什么算法或做法能够高效的代替穷举

对了,那就是二分答案

我们二分最大费用值最小,然后去\(check\)一下当前二分的答案是否合法:即是否有路径能够从\(1\)\(N\)且路径上城市花费值≤当前的答案

  • 那么问题来了,我们知道二分的前提条件即二分的数列必须是有序的,但是本题的数据并没有保证有序,怎么办?

我们可以开另外一个数组\(C'\)代替原来的城市费用数组\(C\)啊!然后直接对\(C'\)进行\(sort\),那我们就可以对\(C'\)这个有序数列进行二分了!

  • 当然,对于输出“AFK”的情况,我们可以在输入完后就跑一遍最短路,如果无法到达或路径不合法(流血总和≥\(b\))则直接“AFK”走人

代码Code

  • 先上二分程序段:
sort(cc+1,cc+1+n);  //变成有序序列
ans=cc[n];
l=1;r=n;
while(l<=r) {  //注意一下这里二分的是下标并不是直接的值
     long long mid=(l+r)>>1;
     if(check(cc[mid])==true) {
        ans=cc[mid];
        r=mid-1;
     } 
     else l=mid+1;
}
printf("%lld",ans);

  • 再上\(check\)函数段:
inline bool check(long long x) {
    for(register int i=1;i<=n;i++) flag[i]=0;  //记得清空!
    for(register int i=1;i<=n;i++) {
        if(c[i]>x)   flag[i]=1;  //所有大于当前答案的城市都不能走
    }
    dijkstra();
    if(dis[n]==1000000000+1||dis[n]>=b) return false;
    return true;
}

  • 最后上完整AC程序:
#include <bits/stdc++.h>
using namespace std;
long long b,w,r,ans,l,c[5100005],cc[5100005];
int n,m,u,v,tot,dis[5100005],vis[5100005],flag[5100005];
int head[5100005];
priority_queue<pair<int,int> > shan;

struct node {
	int to,net;
	long long val;
} e[5100005];

inline void add(int u,int v,int w) {
	e[++tot].to=v;
	e[tot].val=w;
	e[tot].net=head[u];
	head[u]=tot;
}

inline void dijkstra() {
	for(register int i=1;i<=n;i++) {
		vis[i]=0;
		dis[i]=1000000000+1;
	}
	dis[1]=0;
	shan.push(make_pair(0,1));
	while(!shan.empty()) {
		int x=shan.top().second;
		shan.pop();
		if(vis[x]) continue;
		vis[x]=1;
		for(register int i=head[x];i;i=e[i].net) {
			int v=e[i].to;
			if(dis[v]>dis[x]+e[i].val&&flag[x]==0&&flag[v]==0) {
				dis[v]=dis[x]+e[i].val;
				shan.push(make_pair(-dis[v],v));
			}
		}
	}
}

inline bool check(long long x) {
	for(register int i=1;i<=n;i++) flag[i]=0;
	for(register int i=1;i<=n;i++) {
		if(c[i]>x)	flag[i]=1;
	}
	dijkstra();
	if(dis[n]==1000000000+1||dis[n]>=b) return false;
	return true;
}

int main() {
	scanf("%d%d%lld",&n,&m,&b);
	for(register int i=1;i<=n;i++) {
		scanf("%lld",&c[i]);
		cc[i]=c[i];
	}
	for(register int i=1;i<=m;i++) {
		scanf("%d%d%lld",&u,&v,&w);
		add(u,v,w);
		add(v,u,w);
	}
	dijkstra();
	if(dis[n]==1000000000+1||dis[n]>=b) {
		puts("AFK");
		return 0;
	}
	sort(cc+1,cc+1+n);
	ans=cc[n];
	l=1;r=n;
	while(l<=r) {
		long long mid=(l+r)>>1;
		if(check(cc[mid])==true) {
			ans=cc[mid];
			r=mid-1;
		}
		else l=mid+1;
	}
	printf("%lld",ans);
	return 0;
}

posted @ 2020-06-29 14:47  Eleven谦  阅读(125)  评论(0编辑  收藏  举报