无题4

第一题:O (n*m) 对于查询矩阵xl, yl, xr, yr;

可以变为 sum(x, i) * (i, y)   xl <= x <= xr, yl <= y <= yr, 1 <= i <= n;

用一个乘法分配率+前缀和 变为sum ( a[xl - xr][i] * b[i][yl - yr]);

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int M = 2005;
ll sum1[M][M], sum2[M][M], b[M][M], a[M][M], tot;

int main(){
    freopen("matrix.in","r",stdin);
    freopen("matrix.out","w",stdout);
    int n, m, x;
    scanf("%d%d", &n, &m);
    for(int i = 1; i <= n; i++)
        for(int j = 1; j <= n; j++){
            scanf("%lld", &a[i][j]);
            sum1[i][j] = sum1[i - 1][j] + a[i][j];
        }
            
    for(int i = 1; i <= n; i++)
        for(int j = 1; j <= n; j++){
            scanf("%lld", &b[i][j]);
            sum2[i][j] = sum2[i][j - 1] + b[i][j];
        }
        
    int xl, yl, xr, yr;
    while(m--){
        ll ans = 0;
        scanf("%d%d%d%d", &xl, &yl, &xr, &yr);
        if(xl > xr) swap(xl, xr);
        if(yl > yr) swap(yl, yr);
        for(int j = 1; j <= n; j++)
            ans += (sum1[xr][j] - sum1[xl - 1][j]) * (sum2[j][yr] - sum2[j][yl - 1]);
        printf("%lld\n",ans);
    }
}
View Code

 

第二题:X轴,Y轴可以分开处理,就变成了一个中位数问题(证明蓝书上有);因为肯定有一个中位数即一个点存在,我们就可以枚举这个中位数,X,Y各枚举一个,取距离的前i小;

O(n^4 * logn)

#include<bits/stdc++.h>
using namespace std;

const int M = 55, inf = 2e9;
int dis[M];
struct Point{int x, y;}a[M];
inline int ab(int a){return a >= 0 ? a : -a;}
inline int get(int x, int y, int t){
    return ab(x - a[t].x) + ab(y - a[t].y);
}


int main(){
    freopen("tower.in","r",stdin);
    freopen("tower.out","w",stdout);
    int n;
    scanf("%d", &n);
    for(int i = 1; i <= n; i++)scanf("%d%d", &a[i].x, &a[i].y);
    for(int cnt = 1; cnt <= n; cnt++){
        int ans = inf;
        for(int i = 1; i <= n; i++){
            for(int j = 1; j <= n; j++){
                int xx = a[i].x, yy = a[j].y;
                int tmp = 0;
                for(int p = 1; p <= n; p++)
                    dis[p] = get(xx, yy, p);
                sort(dis + 1, dis + 1 + n);
                for(int p = 1; p <= cnt; p++)
                tmp += dis[p];
                ans = min(ans, tmp);    
            }
            
        }
        printf("%d\n", ans);
        
    }
    return 0;
} 
View Code

 

 

第三题:树形DP+高精度;

dp[u][0/1]表示u的子树中的最大匹配,g[u][0/1]表示方案数;

更新dp, 对于u和下面连的情况就暴力枚举和哪一个连;

dp是用那种更新的,g就用那种更新,乘法原理, 如果dp值一样,就加法原理

下面是无高精的code

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int M = 1e3 + 10;
ll g[M][2];
int h[M], dp[M][2], tot;

struct edge{int v, nxt;}G[M << 1];
void add(int u, int v){G[++tot].v = v; G[tot].nxt = h[u]; h[u] = tot;}
void dfs(int u, int f){
    int child = 0, ans = 0;
    ll tmp1 = 1, opt = 0;
    for(int i = h[u]; i; i = G[i].nxt){
        int v = G[i].v;
        if(v == f)continue;
        dfs(v, u);
        child++;
        if(dp[v][0] > dp[v][1]) tmp1 *= g[v][0];
        else if(dp[v][0] == dp[v][1]) tmp1 *= (g[v][0] + g[v][1]);
        else tmp1 *= g[v][1];
        dp[u][0] += max(dp[v][0], dp[v][1]);        
    }
    g[u][0] = tmp1;
    
    for(int i = h[u]; i; i = G[i].nxt){
        int v = G[i].v;
        if(v == f)continue;
        int d = dp[v][0]; 
        ll tmp2 = g[v][0];
        for(int j = h[u]; j; j = G[j].nxt){
            int vv = G[j].v;
            if(vv != f && vv != v){
                if(dp[vv][0] > dp[vv][1]) tmp2 *= g[vv][0];
                else if(dp[vv][0] == dp[vv][1]) tmp2 *= (g[vv][0] + g[vv][1]);
                else tmp2 *= g[vv][1];    
                d += max(dp[vv][0], dp[vv][1]);
            }
            
        }
        if(d > ans)ans = d, opt = tmp2;
        else if(d == ans) opt += tmp2;
    }
    if(child) dp[u][1] = ans + 1, g[u][1] = opt;
    //printf("%d %d %d %lld %lld\n", u, dp[u][0], dp[u][1], g[u][0], g[u][1]);
    
}

int main(){
    freopen("tree.in","r", stdin);
    freopen("tree.out","w",stdout);
    int n, u, x, v;
    scanf("%d", &n);
    for(int i = 1; i <= n; i++){
        scanf("%d%d",&u, &x);
        while(x--) {
            scanf("%d", &v);
            add(u, v);
        }
    }
    dfs(1, 0);
    ll ret = 0;
    if(dp[1][0] >= dp[1][1]) ret += g[1][0];
    if(dp[1][1] >= dp[1][0]) ret += g[1][1];
    printf("%d\n%lld\n", max(dp[1][0], dp[1][1]), ret);
} 
View Code

 

posted @ 2018-09-19 16:37  Ed_Sheeran  阅读(209)  评论(0编辑  收藏  举报