B. Modulo Sum dp

https://codeforces.com/contest/577/problem/B

先读懂题意,substring 这个是子串说明不可以跳 subsequence这个是子序列可以跳

这个题目是一个dp,不过你需要先知道,如果n>m 那么就肯定可以,

接下来证明一下这个,如果n>m,那么设前 i 项的和为 s[i] ,因为s[i]%m取模之后 肯定再0~m-1

因为n>m 由抽屉原理可得 一定有存在 s[i]==s[j],这个所以 存在 s[i]-s[j]==0 这个就说明肯定有m的倍数

然后也容易得到如果有n==m 也是满足条件的,因为n==m要么存在s[i]==0要么就是有s[i]==s[j]

接下来说说这个dp  ,

因为有上面一个分析,就可以把n的数据范围降下来到1e3

所以呢,就可以直接开数组 dp[1e3][1e3] 接下来就是转移方程,这个转移方程很好想就是这一个数选还是不选

转移方程有两种选法一个是刷表法和填表法

填表法就是枚举当前状态,从现在的往前面这里推

dp[i][j]=max(dp[i-1][j],dp[i-1][(j+m-a[i]%m)])  当前这个j可以从之前的j直接推过来,也可以是加了a[i]%m的j推过来,如果是第二种,那么之前的应该要现在的减去a[i]%m

刷表法就是枚举之前的状态,从前面往后面推,这样子一般都会推出两种状态,所以这个一般都有两个转移方程

dp[i][j]=max(dp[i-1][j],dp[i-1][j])   这个就是说不加这个a[i]%m

dp[i][(j+a[i]%m)%m]=max(dp[i-1][(j+a[i]%m)%m],dp[i-1][j])  这个就是加了a[i]%m

 

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<string>
#include<queue>
#include<vector>
#define inf 0x3f3f3f3f
#define debug(x) cout<<"-----"<<" x = "<<x<<"-----"<<endl
using namespace std;
typedef long long ll;
const int  mod = 1e8;
const int maxn = 5e5 + 10;
int dp[1010][1010];
int a[maxn];

int main()
{
    int n, m;
    scanf("%d%d", &n, &m);
    for(int i=1;i<=n;i++)
    {
        scanf("%d", &a[i]);
    }
    if(n>=m)
    {
        printf("YES\n");
        return 0;
    }
    for(int i=1;i<=n;i++)
    {
        dp[i][a[i] % m] = 1;
        //printf("dpp[%d][%d]=%d\n", i, a[i] % m, dp[i][a[i] % m]);
        for(int j=0;j<=m;j++)
        {
            if(j!=a[i]%m) dp[i][j] = max(dp[i - 1][j], dp[i - 1][(j + m - (a[i]%m))%m]);
            //printf("dp[%d][%d]=%d\n", i, j, dp[i][j]);
        }
    }
    if (dp[n][0]) printf("YES\n");
    else printf("NO\n");
    return 0;
}

 

posted @ 2019-05-22 09:18  EchoZQN  阅读(96)  评论(0编辑  收藏  举报