P4016 负载平衡问题 网络流

P4016 负载平衡问题

题目描述

GG 公司有 nn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等。如何用最少搬运量可以使 nn个仓库的库存数量相同。搬运货物时,只能在相邻的仓库之间搬运。

输入输出格式

输入格式:

 

文件的第 11 行中有 11 个正整数 nn,表示有 nn 个仓库。

第 22 行中有 nn 个正整数,表示 nn 个仓库的库存量。

 

输出格式:

 

输出最少搬运量。

 

输入输出样例

输入样例#1: 复制
5
17 9 14 16 4
输出样例#1: 复制
11

说明

1 \leq n \leq 1001n100

 

 

 

 

#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <vector>
#include <cstring>
#include <map>
#include <iostream>
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const int maxn = 1000 + 10;
struct edge
{
    int u, v, c, f, cost;
    edge(int u, int v, int c, int f, int cost) :u(u), v(v), c(c), f(f), cost(cost) {}
};
vector<edge>e;
vector<int>G[maxn];
int a[maxn];//找增广路每个点的水流量
int p[maxn];//每次找增广路反向记录路径
int d[maxn];//SPFA算法的最短路
int inq[maxn];//SPFA算法是否在队列中
int s, t;
void init(int n)
{
    for (int i = 0; i <= n; i++)G[i].clear();
    e.clear();
}
void add(int u, int v, int c, int cost)
{
    e.push_back(edge(u, v, c, 0, cost));
    e.push_back(edge(v, u, 0, 0, -cost));
    int m = e.size();
    G[u].push_back(m - 2);
    G[v].push_back(m - 1);
}
bool bellman(int s, int t, int& flow, long long & cost)
{
    memset(d, inf, sizeof(d));
    memset(inq, 0, sizeof(inq));
    d[s] = 0; inq[s] = 1;//源点s的距离设为0,标记入队
    p[s] = 0; a[s] = inf;//源点流量为INF(和之前的最大流算法是一样的)

    queue<int>q;//Bellman算法和增广路算法同步进行,沿着最短路拓展增广路,得出的解一定是最小费用最大流
    q.push(s);
    while (!q.empty())
    {
        int u = q.front();
        q.pop();
        inq[u] = 0;//入队列标记删除
        for (int i = 0; i < G[u].size(); i++)
        {
            edge & now = e[G[u][i]];
            int v = now.v;
            if (now.c > now.f && d[v] > d[u] + now.cost)
                //now.c > now.f表示这条路还未流满(和最大流一样)
                //d[v] > d[u] + e.cost Bellman 算法中边的松弛
            {
                d[v] = d[u] + now.cost;//Bellman 算法边的松弛
                p[v] = G[u][i];//反向记录边的编号
                a[v] = min(a[u], now.c - now.f);//到达v点的水量取决于边剩余的容量和u点的水量
                if (!inq[v]) { q.push(v); inq[v] = 1; }//Bellman 算法入队
            }
        }
    }
    if (d[t] == INF)return false;//找不到增广路
    flow += a[t];//最大流的值,此函数引用flow这个值,最后可以直接求出flow
    cost += (long long)d[t] * (long long)a[t];//距离乘上到达汇点的流量就是费用
    for (int u = t; u != s; u = e[p[u]].u)//逆向存边
    {
        e[p[u]].f += a[t];//正向边加上流量
        e[p[u] ^ 1].f -= a[t];//反向边减去流量 (和增广路算法一样)
    }
    return true;
}
int Maxflow(int s, int t, long long & cost)
{
    cost = 0;
    int flow = 0;
    while (bellman(s, t, flow, cost));//由于Bellman函数用的是引用,所以只要一直调用就可以求出flow和cost
    return flow;//返回最大流,cost引用可以直接返回最小费用
}

int exa[maxn];
int main()
{
    int n;
    cin >> n;
    s = 0, t = 2 * n + 1;
    int sum = 0;
    for(int i=1;i<=n;i++)
    {
        cin >> exa[i];
        sum += exa[i];
    }
    int len = sum / n;
    for(int i=1;i<=n;i++)
    {
        if(exa[i]>len)    add(s, i, exa[i] - len, 0);
        else if (exa[i] < len) add(i, t, len - exa[i], 0);
    }
    for(int i=1;i<=n;i++)
    {
        if (i != 1) add(i, i - 1, inf, 1);
        if (i != n) add(i, i + 1, inf, 1);
    }
    add(1, n, inf, 1);
    add(n, 1, inf, 1);
    ll cost = 0;
    int an = Maxflow(s, t, cost);
    printf("%lld\n", cost);
    return 0;
}
View Code

 

posted @ 2019-04-29 20:57  EchoZQN  阅读(178)  评论(0编辑  收藏  举报