关于 n 个 [0,1] 的随机变量第 k 小的期望值
今天做到一道题,感觉里面一个结论有点意思,就到网上扒了篇证明(bushi)下来了。
知乎回答习惯,先抛结论,再给证明(大雾
结论:对于 \(n\) 个取值范围为 \([0,1]\) 的随机变量 \(x_1,x_2,\cdots,x_n\),其中第 \(k\) 大的值的期望为 \(\dfrac{k}{n+1}\)
证明:首先我们先列出式子来,枚举最大值 \(x\),那么
稍微解释一下,前面的系数 \(n\) 表示第 \(k\) 大可以是这 \(n\) 个变量中的任何一个,\(\dbinom{n-1}{k-1}\) 表示从其余 \(n-1\) 个数中选出 \(k-1\) 个比它小的方案数,由于是离散变量,所以出现相同值的概率为 \(0\),后面的积分就是枚举最大值,\(x^{k-1}\) 表示比它小的 \(k-1\) 个数的取值的概率,\((1-x)^{n-k}\) 即是比它大的部分,最后的 \(x\) 就是期望公式里对答案的贡献。
前面 \(n\dbinom{n-1}{k-1}\) 显然是定值,因此我们只用考虑后面的部分即可。
那后面那坨东西该怎么求呢?
前置知识:分部积分法
根据 \((u(x)v(x))'=u'(x)v(x)+u(x)v'(x)\) 可得 \(u(x)v'(x)=(u(x)v(x))'-u'(x)v(x)\)
两边同时积分可得:
这就是著名的分部积分法。
考虑将分部积分法应用于这里,令 \(u(x)=(1-x)^{n-k},v(x)=\dfrac{1}{k+1}x^{k+1}\),那么 \(v'(x)=x^k\)
故我们有:
我们记 \(f(t)=\int_0^1x^t·(1-x)^{n-t}\,\mathrm dx\),那么上式可化为 \(f(t)=\dfrac{n-t}{t+1}f(t+1)\)
而显然 \(f(n)=\int_0^1x^n=\dfrac{1}{n+1}\)
简单递推一下即可得到 \(f(t)=\dfrac{\prod\limits_{i=1}^{n-t}i}{\prod\limits_{i=t+1}^{n+1}i}=\dfrac{(n-t)!t!}{(n+1)!}\)。
因此 \(ret=f(k)\times n\times\dbinom{n-1}{k-1}=\dfrac{(n-k)!k!}{(n+1)!}\times n\times\dfrac{(n-1)!}{(k-1)!(n-k)!}=\dfrac{k}{n+1}\),得证。
更高级的推法
又教我学会了一个新东西:\(\Gamma\) 函数和 \(B\)(Beta)函数,虽然不知道能不能派得上用场?
\(\Gamma\) 函数
伽马函数,又叫欧拉第二积分,它的定义如下:
它还有一个等价的定义,不过感觉不是太重要罢:
可以使用恒等式
来验证。
它的推导如下:
考虑生成函数 \(F(x)=\dfrac{1}{1-x}\)
首先用离散形式将其展开可得 \(F(x)=\sum\limits_{i=0}^{\infty}x^i\)
其次考虑对其进行连续展开,根据 \(a^x\) 的不定积分为 \(\dfrac{a^{x}}{\ln a}+C\) 可得
(u1s1 我一开始盯着这个式子看了很久,我原本的理解是设 \(f(t)=(e^{-(1-x)})^t\),那么上面的式子可以看作 \(f(t)\) 在 \(\infty\) 出的定积分,然鹅我一开始按不定积分的式子带,根据指数函数的积分公式 \(\int_0^tf(t)\,\mathrm dt=\dfrac{e^{-(1-x)t}}{-(1-x)}+C\),代入 \(\infty\) 得原式等于 \(0\)。。。。smg?大概是我积分没学好罢……这玩意儿是个定积分,而刚刚带的是不定积分,事实上如果代入 \(0\) 可得原式等于 \(-\dfrac{1}{1-x}\),而事实上 \(f(t)\) 在 \(0\) 处的定积分应当为 \(0\),也就是说上面式子里的常数 \(C=\dfrac{1}{1-x}\),所以刚刚算出来的 \(0\) 也应当是 \(\dfrac{1}{1-x}\))
考虑提一个 \(e^{-t}\) 出来:
把那 \(e^{xt}\) 展开成麦克劳林级数的形式:
交换求和号并整理可得:
对比前后两项系数可得:
由此可见,伽马函数与阶乘有着密切的联系,事实上,对于正整数 \(k\) 有 \(k!=\Gamma(k+1)\)
伽马函数还有一个非常神奇的公式:
由此可以证明著名等式:
(不过似乎也不知道有什么用)
贝塔函数
定义贝塔函数 \(B(x,y)\)(又叫欧拉第一积分)为:
也类似于第一个推导过程中的 \(f(t)\)。
它有递推式:
- \(B(p,q)=\dfrac{q-1}{p+q-1}B(p-1,q)\)
- \(B(p,q)=\dfrac{p-1}{p+q-1}B(p,q-1)\)
这个在证法一中就证过了。
贝塔函数最重要的一条性质是:
证明要正态分布,not for me,thx
回到我们要证明的命题来,我们要求 \(\int_0^1x^{k}·(1-x)^{n-k}\),即 \(B(k+1,n-k+1)\),公式直接往里带即可。
一道的一个小性质竟能引申出这么多东西来,神奇
参考文献: