CF 724E - Goods transportation
E. Goods transportation
time limit per test2 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
There are n cities located along the one-way road. Cities are numbered from 1 to n in the direction of the road.
The i-th city had produced pi units of goods. No more than si units of goods can be sold in the i-th city.
For each pair of cities i and j such that 1 ≤ i < j ≤ n you can no more than once transport no more than c units of goods from the city i to the city j. Note that goods can only be transported from a city with a lesser index to the city with a larger index. You can transport goods between cities in any order.
Determine the maximum number of produced goods that can be sold in total in all the cities after a sequence of transportations.
Input
The first line of the input contains two integers n and c (1 ≤ n ≤ 10 000, 0 ≤ c ≤ 109) — the number of cities and the maximum amount of goods for a single transportation.
The second line contains n integers pi (0 ≤ pi ≤ 109) — the number of units of goods that were produced in each city.
The third line of input contains n integers si (0 ≤ si ≤ 109) — the number of units of goods that can be sold in each city.
Output
Print the maximum total number of produced goods that can be sold in all cities after a sequence of transportations.
Examples
input
3 0
1 2 3
3 2 1
output
4
input
5 1
7 4 2 1 0
1 2 3 4 5
output
12
input
4 3
13 10 7 4
4 7 10 13
output
34
第一次遇到网络流中运用到最大流等于最小割这个思想,也是第一次写DP求最小割。
题目大意:城市 i 最多能生产pi件货物,最多有si件货物能在这里卖出。每个城市可以向编号比自己大的城市运送最多c件货物。求最多能卖出的货物的总数。
数据范围:
1
≤
n
≤
10
000
,
0
≤
c
≤
1
0
9
,
0
≤
p
i
≤
1
0
9
,
0
≤
s
i
≤
1
0
9
1 ≤ n ≤ 10 000, 0 ≤ c ≤ 10^9, 0 ≤ pi ≤ 10^9, 0 ≤ si ≤ 10^9
1 ≤ n ≤ 10 000,0 ≤ c ≤ 109,0 ≤ pi ≤ 109,0 ≤ si ≤ 109
网络流建图。一个源点S,一个汇点T,对于每个点i,生产货物pi件,则从S到连一条容量为pi的路径,可以销售货物si,则从i到T连一条容量为si的路径。然后每个点又向比自己大的点连一条容量为c的路径。
边的数量过多,需要的时间太多。
考虑到最大流等于最小割。
每个点都向编号比自己大的点连一条容量为c的路径。也就是说依次从小到大加入点的时候,边也是从从小的点指向大的点,也就是说整个过程是无后效性的。想到用DP来做。
d
p
[
i
]
[
j
]
dp[i][j]
dp[i][j],i表示从当前点,j表示i之前有几个点是和源点S是属于一个集合的。
如果当前点i属于集合S,我们只需要割掉这个点与汇点T的边s[i]就可以了,即
d
p
[
i
]
[
j
]
=
d
p
[
i
]
[
j
−
1
]
+
s
[
i
]
dp[i][j] = dp[i][j-1] + s[i]
dp[i][j]=dp[i][j−1]+s[i]
如果当前点i属于集合T,我们需要割点这个点与源点S的边p[i]和之前属于S的点指向当前点的容量为C的路径,即
d
p
[
i
]
[
j
]
=
d
p
[
i
]
[
j
]
+
j
∗
c
+
p
[
i
]
dp[i][j] = dp[i][j] + j * c + p[i]
dp[i][j]=dp[i][j]+j∗c+p[i]
用一个滚动数组来防止空间太大就可以了
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int MAXN = 1e4+10;
ll p[MAXN],s[MAXN];
ll dp[2][MAXN];
int main()
{
ll n,c;
scanf("%lld%lld",&n,&c);
for (int i = 1;i<=n;i++) scanf("%lld",&p[i]);
for (int i = 1;i<=n;i++) scanf("%lld",&s[i]);
int f = 0;
for (int i = 1;i<=n;i++) dp[1][i] = dp[0][i] = 9e18;
dp[1][0] = 0;
for (int i = 1;i<=n;i++)
{
dp[f][0] = dp[f ^ 1][0] + p[i];
for (int j = 1;j<=i;j++) dp[f][j] = min(dp[f ^ 1][j] + j * c + p[i],dp[f ^ 1][j-1] + s[i]);
f ^= 1;
}
ll ans = 9e18;
for (int i = 0;i<=n;i++) ans = min(ans,dp[f ^ 1][i]);
cout<<ans;
return 0;
}
本文来自博客园,作者:Un-Defined,转载请保留本文署名Un-Defined,并在文章顶部注明原文链接:https://www.cnblogs.com/EIPsilly/p/17463693.html