2017 Multi-University Training Contest - Team 9 1004&&HDU 6164 Dying Light【数学+模拟】
Dying Light
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 513 Accepted Submission(s): 122
LsF is visiting a local amusement park with his friends, and a mirror room successfully attracts his attention. Inside the mirror room, there are n plane mirrors standing vertically on the ground. They are placed end-to-end and face-to-face so that if you overlook the room, you can find a convex hull and the all the reflector surfaces are inside the pattern. The height of the mirror is not important in this problem.
Due to imperfect manufacturing techniques, mirrors can't reflect light without lose of energy. Each mirror has a reflection efficiency k, which means if the incident light's intensity is I, the reflected light's intensity will be reduced to kI. The only exception could happen when the light precisely goes to the two mirrors' junction. In that case, the light will be completely absorbed instantly. Note the laws of reflection of light applies in all other situations, that the angle of incidence equals the angle of reflection.
Now LsF stands inside the mirror hall, and shoots a laser beam paralleled to the ground using his laser pointer. Unfortunately, his laser pointer can only shot laser beams with intensity of 1. What's worse, a laser beam is considered disappeared if its intensity is below 10−4. There's not much magnitude distance between the two numbers.
LsF wants to know how many touches can his laser beam make with mirrors before it disappears.
Then n lines follow. The ith line contains three real numbers xi,y, which means the ith mirror's one end is at position (xi,y and another end is at (xi+1mod n,ymod n), and its reflectivity is ki.
Next there are two real numbers Vx,Vy(-109≤Vx,Vy≤109), indicating the initial direction vector of the laser beam.
LsF is standing at the origin (0, 0).
4 1 2 0.5 -1 0 0.5 1 -2 0.5 3 0 0.5 0 1 4 1 1 0.5 -1 1 0.5 -1 -1 0.5 1 -1 0.5 1 1
14 1
由于反射率<=0.9 0.9^100<1e-4,所以反射次数不会超过100次。
每次暴力判断和哪个镜子相交,以及有没有在镜子焦点上。
1 #include <cstring> 2 #include <algorithm> 3 #include <cstdio> 4 #include <iostream> 5 6 #define MAXN 5000 7 #define eps 1e-9 8 9 struct point 10 { 11 double x,y; 12 point(double a = 0,double b = 0) 13 { 14 x = a; y = b; 15 } 16 friend point operator + (point a,point b) 17 { 18 return point(a.x+b.x,a.y+b.y); 19 } 20 friend point operator - (point a,point b) 21 { 22 return point(a.x-b.x,a.y-b.y); 23 } 24 friend double operator ^ (point a,point b) 25 { 26 return a.x*b.y-a.y*b.x; 27 } 28 friend double operator * (point a,point b) 29 { 30 return a.x*b.x+a.y*b.y; 31 } 32 friend point operator * (point a,double b) 33 { 34 return point(a.x*b,a.y*b); 35 } 36 friend point operator * (double a,point b) 37 { 38 return point(a*b.x,a*b.y); 39 } 40 41 }; 42 43 struct line 44 { 45 point s,e; 46 line(point a = point(0,0),point b = point(0,0)) 47 { 48 s = a; e = b; 49 } 50 }; 51 52 point p[MAXN+5]; 53 double c[MAXN+5]; 54 int n; 55 point s[2]; 56 57 int sgn(double x) 58 { 59 if (x>eps) return 1; 60 if (x<-eps) return -1; 61 return 0; 62 } 63 64 point Get_Intersect(line a,line b) 65 { 66 double u=(a.e-a.s)^(b.s-a.s); 67 double v=(a.s-a.e)^(b.e-a.e); 68 point p; 69 p.x=(b.s.x*v+b.e.x*u)/(v+u); 70 p.y=(b.s.y*v+b.e.y*u)/(v+u); 71 return p; 72 } 73 74 int main() 75 { 76 // freopen("input.txt","r",stdin); 77 while(scanf("%d",&n)!=EOF) 78 {for (int i=0;i<n;i++) scanf("%lf%lf%lf",&p[i].x,&p[i].y,&c[i]); 79 p[n] = p[0]; 80 s[0] = point(0,0); 81 scanf("%lf%lf",&s[1].x,&s[1].y); 82 83 double now = 1.0; 84 int ans = 0; 85 bool flag = 1; 86 point temp; 87 point temp2; 88 line l1,l2,l3,l4; 89 while (now > 1e-4) 90 { 91 ans++; 92 for (int i=0;i<n;i++) 93 { 94 if (!sgn((p[i]-s[0])^s[1])) 95 { 96 now = 0; 97 flag = 0; 98 break; 99 } 100 } 101 if (!flag) break; 102 for (int i=0;i<n;i++) 103 { 104 if (sgn((p[i]-s[0])^s[1]) > 0 && sgn(s[1]^(p[i+1]-s[0]))>0) 105 { 106 l1 = line(p[i+1],p[i]); 107 l2 = line(s[0],s[1]+s[0]); 108 temp = Get_Intersect(l1,l2); 109 110 l3 = line(temp,point(p[i+1].y-p[i].y,p[i].x-p[i+1].x)+temp); 111 l4 = line(s[0],point(p[i].x-p[i+1].x,p[i].y-p[i+1].y)+s[0]); 112 113 temp2 = Get_Intersect(l3,l4); 114 temp2 = 2*temp2-s[0]; 115 s[0] = temp; 116 s[1] = temp2-s[0]; 117 now *= c[i]; 118 break; 119 } 120 } 121 } 122 printf("%d\n",ans); 123 } 124 return 0; 125 }
作 者:Angel_Kitty
出 处:https://www.cnblogs.com/ECJTUACM-873284962/
关于作者:阿里云ACE,目前主要研究方向是Web安全漏洞以及反序列化。如有问题或建议,请多多赐教!
版权声明:本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文链接。
特此声明:所有评论和私信都会在第一时间回复。也欢迎园子的大大们指正错误,共同进步。或者直接私信我
声援博主:如果您觉得文章对您有帮助,可以点击文章右下角【推荐】一下。您的鼓励是作者坚持原创和持续写作的最大动力!
欢迎大家关注我的微信公众号IT老实人(IThonest),如果您觉得文章对您有很大的帮助,您可以考虑赏博主一杯咖啡以资鼓励,您的肯定将是我最大的动力。thx.
我的公众号是IT老实人(IThonest),一个有故事的公众号,欢迎大家来这里讨论,共同进步,不断学习才能不断进步。扫下面的二维码或者收藏下面的二维码关注吧(长按下面的二维码图片、并选择识别图中的二维码),个人QQ和微信的二维码也已给出,扫描下面👇的二维码一起来讨论吧!!!
欢迎大家关注我的Github,一些文章的备份和平常做的一些项目会存放在这里。