Codeforces 839D Winter is here【数学:容斥原理】
D. Winter is here
Winter is here at the North and the White Walkers are close. John Snow has an army consisting of n soldiers. While the rest of the world is fighting for the Iron Throne, he is going to get ready for the attack of the White Walkers.
He has created a method to know how strong his army is. Let the i-th soldier’s strength be ai. For some k he calls i1, i2, ..., ik a clan if i1 < i2 < i3 < ... < ik and gcd(ai1, ai2, ..., aik) > 1 . He calls the strength of that clan k·gcd(ai1, ai2, ..., aik). Then he defines the strength of his army by the sum of strengths of all possible clans.
Your task is to find the strength of his army. As the number may be very large, you have to print it modulo 1000000007 (109 + 7).
Greatest common divisor (gcd) of a sequence of integers is the maximum possible integer so that each element of the sequence is divisible by it.
The first line contains integer n (1 ≤ n ≤ 200000) — the size of the army.
The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 1000000) — denoting the strengths of his soldiers.
Print one integer — the strength of John Snow's army modulo 1000000007 (109 + 7).
3
3 3 1
12
4
2 3 4 6
39
In the first sample the clans are {1}, {2}, {1, 2} so the answer will be 1·3 + 1·3 + 2·3 = 12
题目链接:http://codeforces.com/contest/839/problem/D
下面给出AC代码:
1 #include<cstdio> 2 const int N=1000010,P=1000000007; 3 int n,i,j,x,ans,po[N],a[N],f[N]; 4 int main(){ 5 scanf("%d",&n); 6 for(po[0]=i=1;i<=n;i++)po[i]=2*po[i-1]%P; 7 while(n--)scanf("%d",&x),a[x]++; 8 for(i=N-1;i>1;i--){ 9 for(j=i,x=0;j<N;j+=i)x+=a[j]; 10 if(x){ 11 f[i]=1LL*x*po[x-1]%P; 12 for(j=i+i;j<N;j+=i)f[i]=(f[i]-f[j]+P)%P; 13 ans=(1LL*f[i]*i+ans)%P; 14 } 15 } 16 printf("%d",ans); 17 }
作 者:Angel_Kitty
出 处:https://www.cnblogs.com/ECJTUACM-873284962/
关于作者:阿里云ACE,目前主要研究方向是Web安全漏洞以及反序列化。如有问题或建议,请多多赐教!
版权声明:本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文链接。
特此声明:所有评论和私信都会在第一时间回复。也欢迎园子的大大们指正错误,共同进步。或者直接私信我
声援博主:如果您觉得文章对您有帮助,可以点击文章右下角【推荐】一下。您的鼓励是作者坚持原创和持续写作的最大动力!
欢迎大家关注我的微信公众号IT老实人(IThonest),如果您觉得文章对您有很大的帮助,您可以考虑赏博主一杯咖啡以资鼓励,您的肯定将是我最大的动力。thx.
我的公众号是IT老实人(IThonest),一个有故事的公众号,欢迎大家来这里讨论,共同进步,不断学习才能不断进步。扫下面的二维码或者收藏下面的二维码关注吧(长按下面的二维码图片、并选择识别图中的二维码),个人QQ和微信的二维码也已给出,扫描下面👇的二维码一起来讨论吧!!!
欢迎大家关注我的Github,一些文章的备份和平常做的一些项目会存放在这里。