洛谷 2634&&BZOJ 2152: 聪聪可可【点分治学习+超详细注释】

2152: 聪聪可可

Time Limit: 3 Sec  Memory Limit: 259 MB
Submit: 3435  Solved: 1776
[Submit][Status][Discuss]

Description

聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃、两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好了,可是他们已经玩儿腻了这种低智商的游戏。他们的爸爸快被他们的争吵烦死了,所以他发明了一个新游戏:由爸爸在纸上画n个“点”,并用n-1条“边”把这n个“点”恰好连通(其实这就是一棵树)。并且每条“边”上都有一个数。接下来由聪聪和可可分别随即选一个点(当然他们选点时是看不到这棵树的),如果两个点之间所有边上数的和加起来恰好是3的倍数,则判聪聪赢,否则可可赢。聪聪非常爱思考问题,在每次游戏后都会仔细研究这棵树,希望知道对于这张图自己的获胜概率是多少。现请你帮忙求出这个值以验证聪聪的答案是否正确。

Input

输入的第1行包含1个正整数n。后面n-1行,每行3个整数x、y、w,表示x号点和y号点之间有一条边,上面的数是w。

Output

以即约分数形式输出这个概率(即“a/b”的形式,其中a和b必须互质。如果概率为1,输出“1/1”)。

Sample Input

5
1 2 1
1 3 2
1 4 1
2 5 3

Sample Output

13/25
【样例说明】
13组点对分别是(1,1) (2,2) (2,3) (2,5) (3,2) (3,3) (3,4) (3,5) (4,3) (4,4) (5,2) (5,3) (5,5)。

【数据规模】
对于100%的数据,n<=20000。

HINT

Source

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2152

一道裸的树分治

令节点 i 到当前分治的节点的距离为 dis[i] ,对于任意一个满足条件的点对 [i,j] ,有 (dis[i] + dis[j]) % 3 = 0

我们将所有点的 dis[] 值对 3 取余,统计出取余后结果为 0,1,2 的个数,记为 num[0], num[1], num[2]。

那么,对于子树中任意的一个节点 i :

1)dis[i] % 3 = 0 时:当前符合条件的点对数为 num[0](即同为 3 的倍数);

2)dis[i] % 3 = 1 时:当前符合条件的点对数为 num[3 - 1 = 2] 。

(证明:将 dis[i] 拆成 3x + 1,满足条件的另一个点的距离 dis[j] 拆成 3y + 2,则和为 3x + 1 + 3y + 2 = 3x + 3y + 3 = 3(x + y + 1),是 3 的倍数)

3)dis[i] % 3 = 2 时:当前符合条件的点对数为 num[3 - 2 = 1] 。(证明同上)

以上情况可合并为 cnt += (!dis[i] ? num[0] : num[3 - dis[i]])(cnt 为记录的答案,dis[i] 已经对 3 取余过)

下面给出AC代码:

  1 #include <bits/stdc++.h>
  2 using namespace std;
  3 inline int read()//读入优化
  4 {
  5     int x=0,f=1;//f表示符号,x表示首位数字0
  6     char ch=getchar();
  7     while(ch<'0'||ch>'9')//如果ch不是数字
  8     {
  9         if(ch=='-')//如果是符号就改变符号
 10             f=-1;
 11         ch=getchar();
 12     }
 13     while(ch>='0'&&ch<='9')//如果ch是数字,接下来的每位数字
 14     {
 15         x=x*10+ch-'0';//将数字添加进x内
 16         ch=getchar();
 17     }
 18     return x*f;//返回数值
 19 }
 20 inline void write(int x)//输出优化
 21 {
 22     if(x<0)//判断小于0的情况
 23     {
 24         putchar('-');
 25         x=-x;
 26     }
 27     if(x>9)//保存每一位
 28     {
 29         write(x/10);
 30     }
 31     putchar(x%10+'0');//输出
 32 }
 33 inline int gcd(int a,int b)//求最大公因数
 34 {
 35     return b==0?a:gcd(b,a%b);
 36 }
 37 const int N=20010;
 38 int last[N];
 39 int son[N];//son表示树的大小
 40 int f[N];//表示最大子树的节点数
 41 int d[N];//表示到k的距离
 42 int t[N];//表示到k的距离%3=0的点的个数
 43 bool vis[N];
 44 struct Edge//前向星存边
 45 {
 46     int to,next,v;
 47 }edge[N<<1];//保存双向图
 48 int n,cnt,ans,root,sum;
 49 inline void addage(int u,int v,int w)//连双向边
 50 {
 51     edge[++cnt].to=v;
 52     edge[cnt].next=last[u];
 53     last[u]=cnt;
 54     edge[cnt].v=w;
 55     edge[++cnt].to=u;
 56     edge[cnt].next=last[v];
 57     last[v]=cnt;
 58     edge[cnt].v=w;
 59 }
 60 inline void getroot(int x,int fa)//寻找根节点,根节点满足最大儿子子树规模最小,求重心的操作
 61 {
 62     son[x]=1;//son[x]表示x的树大小
 63     f[x]=0;//f[x]表示x最大子树的节点数
 64     for(int i=last[x];i;i=edge[i].next)//枚举和x相邻的每一个点
 65     {
 66         if(!vis[edge[i].to]&&edge[i].to!=fa)//如果没有被删除,并且当前节点不是根节点
 67         {
 68             getroot(edge[i].to,x);
 69             son[x]+=son[edge[i].to];//子树规模
 70             f[x]=max(f[x],son[edge[i].to]);
 71         }
 72     }
 73     f[x]=max(f[x],sum-son[x]);//x最大子树的节点数f[x]=max(f[x],与此子树大小-f[x])
 74     if(f[x]<f[root])
 75         root=x;
 76 }
 77 inline void getdeep(int x,int fa)//获得每个点到cal中的x的距离,即root
 78 {
 79     t[d[x]]++;//统计到k距离的个数,//将对应余数的数目+1
 80     for(int i=last[x];i;i=edge[i].next)//枚举和x相邻的每一个点
 81     {
 82         if(!vis[edge[i].to]&&edge[i].to!=fa)//如果没有被删除,并且当前节点不是根节点
 83         {
 84             d[edge[i].to]=(d[x]+edge[i].v)%3;
 85             getdeep(edge[i].to,x);
 86         }
 87     }
 88 }
 89 inline int cal(int x,int now)//t[0]表示到k的距离%3=0的点的个数,t[1]表示余数为1,t[2]表示余数为2,所以计算方案数时,t[0]内部解决,t[1]和t[2]两两搭配
 90 {
 91     t[0]=t[1]=t[2]=0;//余数清0
 92     d[x]=now;
 93     getdeep(x,0);//getdeep更新子树的root的值,计算深度root
 94     return t[1]*t[2]*2+t[0]*t[0];//计算路径数
 95 }
 96 inline void work(int x)//表示work以x为根的子树,此时x已经是重心
 97 {
 98     ans+=cal(x,0);//统计不同子树通过重心的个数
 99     vis[x]=1;//把x从树中删除
100     for(int i=last[x];i;i=edge[i].next)//枚举和x相邻的每一个点
101     {
102         if(!vis[edge[i].to])//如果没有被删除,说明在某一棵子树中
103         {
104             ans-=cal(edge[i].to,edge[i].v);//去除在同一个子树中被重复统计的
105             root=0;
106             sum=son[edge[i].to];
107             getroot(edge[i].to,0);//找到所在子树的重心root,更新重心root
108             work(root);//递归处理root,求解子树
109         }
110     }
111 }
112 int main()
113 {
114     n=read();
115     for(int i=1;i<n;i++)//建图
116     {
117         int u=read();
118         int v=read();
119         int w=read()%3;
120         addage(u,v,w);//建立一个无向图
121     }
122     f[0]=n;
123     sum=n;
124     getroot(1,0);
125     work(root);
126     int t=gcd(ans,n*n);
127     printf("%d/%d\n",ans/t,n*n/t);
128     return 0;
129 }

 

posted @ 2017-08-04 16:50  Angel_Kitty  阅读(278)  评论(2编辑  收藏  举报