Max Sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 250714 Accepted Submission(s): 59365
Problem Description
Given
a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max
sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in
this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The
first line of the input contains an integer T(1<=T<=20) which
means the number of test cases. Then T lines follow, each line starts
with a number N(1<=N<=100000), then N integers followed(all the
integers are between -1000 and 1000).
Output
For
each test case, you should output two lines. The first line is "Case
#:", # means the number of the test case. The second line contains three
integers, the Max Sum in the sequence, the start position of the
sub-sequence, the end position of the sub-sequence. If there are more
than one result, output the first one. Output a blank line between two
cases.
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
Sample Output
Case 1:
14 1 4
Case 2:
7 1 6
Author
Ignatius.L
初来乍到,动态规划也是刚刚接触。刚开始用暴力法,Time limit……
在网上搜了代码。大多是只说是动态规划经典问题、求最大子序列和,然后就是一串代码。最好的就是带了几行注释…没有太多通俗的解释…硬着头皮看了一晚上,终于算是有了眉目想通了。
在这里写下自己对这个动态规划求最大子序列和的理解,通俗一点的解释。(只是个人的理解哦,仅供参考)
这里的求最大子序列和应该是变种了吧,呵呵,还要加上最大子序列的起始和终止位置……只要知道怎么求最大子序列和,那么附加个位置应该不难的。
先来看代码:
1 #include <iostream>
2 using namespace std;
3 int main()
4 {
5 int j,i,k,n,m,t;
6 int a[100002];
7 scanf("%d",&t);
8 for (j=1;j<=t;j++)
9 {
10 scanf("%d",&n);
11 for (i=0;i<n;i++)
12 {
13 scanf("%d",&a[i]);
14 }
15 int sum=0,maxsum=-1001,first =0, last = 0, temp = 1;
16 for (i=0;i<n;i++)
17 {
18 sum += a[i];
19 if (sum > maxsum)
20 {
21 maxsum = sum;first = temp;last = i+1;
22 }
23 if (sum < 0)
24 {
25 sum = 0;temp = i+2;
26 }
27 }
28
29 printf("Case %d:\n%d %d %d\n",j,maxsum,first,last);
30 if (j!=t)
31 {
32 printf("\n");
33 }
34 }
35
36 return 0;
37 }
本想用通俗的话语来解释这个道理,结果发现,通俗了以后就非文字所能描述的好的了,需要各种的手势+纸笔画一阵子,无奈表达能力有限,只好……只好用这样的看似非常严密的数学推理来说明了(囧)
对于整个序列a[n]来说,它的所有子序列有很多很多,但是可以将它们归类。
注意,是以**结尾的子序列,其中肯定是要包含**的了
以a[0]结尾的子序列只有a[0]
以a[1]结尾的子序列有 a[0]a[1]和a[1]
以a[2]结尾的子序列有 a[0]a[1]a[2] / a[1]a[2] / a[2]
……
以a[i]结尾的子序列有a[0]a[1]……a[i-2]a[i-1]a[i] / a[1]a[2]……a[i-2]a[i-1]a[i] / a[2]a[3]……a[i-2]a[i-1]a[i] / …… / a[i-1]a[i] / a[i]
所有以a[0] ~a[n]结尾的子序列分组构成了整个序列的所有子序列。
这样,我们只需求以a[0]~a[n]结尾的这些分组的子序列中的每一分组的最大子序列和。然后从n个分组最大子序列和中选出整个序列的最大子序列和。
观察可以发现,0,1,2,……,n结尾的分组中,
maxsum a[0] = a[0]
maxsum a[1] = max( a[0] + a[1] ,a[1]) = max( maxsum a[0] + a[1] ,a[1])
maxsum a[2] = max( max ( a[0] + a[1] + a[2],a[1] + a[2] ),a[2])
= max( max( a[0] + a[1] ,a[1]) + a[2] , a[2])
= max( maxsum a[1] + a[2] , a[2])
……
依此类推,可以得出通用的式子。
maxsum a[i] = max( maxsum a[i-1] + a[i],a[i])
用递归……当然,不递归也应该是可以解决的。
我们从maxsum a[0]开始算起。
以后的每个就是 maxsum a[i-1] + a[i] 和 a[i] 中取大的那个。
程序中判断 前一个的最大子序列和小于零时,将其置为0,然后再加a[i] ,这样不就是和a[i] 一样大的么;前一个的最大子序列和只要大于零,那么再加上a[i] 肯定比 a[i] 要大,这样,带有归零的这个 maxsum a[i-1] + a[i] 就是以表示当前位置结束的子序列的最大和了。
剩下的就是要判断起始和终点位置了。
在循环的过程中,每循环一次就算出一个以当前位置结束的最大子序列和。每次循环中最大的那个保存下来,不就是最终所有最大子序列和中的最大值了么。
其中temp保存的是前一个位置的最大子序列和的开始位置(题目中是从1开始的哦);当 sum > maxsum 时(程序中的条件,与说明时的maxsum不太一样哦)就记录最大值,并保持它的开始位置为temp,终止位置即为当前位置(i +1是因为题目中第一个为1,而不是0);
当最大子序列和小于0时,将 temp = i + 2; 其中 i + 1 表示当前位置(理由如上),i + 2就表示当前位置的下一个位置了。既此最大子序列和为负值,那么下一个的最大子序列和应该是它本身,而不再累加前边的。
程序中就两个if 语句,想要说明白还真不容易。
还有,有人会问,当整个序列全是负数时,还对吗?负数也是成立的,如果全是负数的时候,它就是每次都只取当前值作为最大值了,因为负的跟负的不就越加越小了吗。
因为题目中给出的范围是-1000 ~1000,所以这里初始的maxsum 初始化为-1001 ,只有比所有可能的值都小时才行。maxsum初始化为0;那么当序列全是负数时,得出的最大值将是0……这就wrong了
总之,只要上一个子序列最大和为正,那么无论当前值的正负,都会与当前的相加,这样以当前值结尾的子序列最大和就会增大。(一个正数 加一个 正数2 或者负数 那么都会比这个正数2 或负数原来要增大,同理,一个负数加任何一个数,都会使这个数减小,因此当前一子序列最大和小于零时,我们就归零它了,相当于是不加任何数,而保留当前位置值本身)
内存优化版:
理解了以上思想后,观察上一个代码我们发现,那个a[10000]基本上就没用啊,保存了一些输入数据,可是那些数据只用了一次就没用了。输入数据的for循环和处理数据的for循环是一模一样的,而且处理数据也只是用到当前输入的数据。
于是,数组也可以省去了,直接将两个循环合并。输入一个数据,直接累加……省下不少空间哦。
1 #include <iostream>
2 using namespace std;
3 int main()
4 {
5 int j,i,k,n,m,t;
6 int a; //不需要数组,只需要一个输入变量
7 scanf("%d",&t);
8 for (j=1;j<=t;j++)
9 {
10 scanf("%d",&n);
11 int sum=0,maxsum=-1001,first =0, last = 0, temp = 1;
12 for (i=0;i<n;i++)
13 {
14 scanf("%d",&a);
15 sum += a;
16 if (sum > maxsum)
17 {
18 maxsum = sum;first = temp;last = i+1;
19 }
20 if (sum < 0)
21 {
22 sum = 0;temp = i+2;
23 }
24 }
25 //注意格式,我就因为将冒号写到了数的前边而wrong answer,郁闷半天才发现……
26 printf("Case %d:\n%d %d %d\n",j,maxsum,first,last);
27 if (j!=t)
28 {
29 printf("\n");
30 }
31 }
32
33 return 0;
34 }