lucene 分词实现

一、概念认识

1、常用的Analyer

SimpleAnalyzer、StopAnalyzer、WhitespaceAnalyzer、StandardAnalyzer

2、TokenStream

分词器做好处理之后得到的一个流,这个流中存储了分词的各种信息,可以通过TokenStream有效的获取到分词单元信息生成的流程

在这个流中所需要存储的数据

3、Tokenizer

主要负责接收字符流Reader,将Reader进行分词操作。有如下一些实现类

4、TokenFilter

将分词的语汇单元,进行各种各样过滤

5、内置常用分词器分词进行分词的差异

1
2
3
4
5
6
7
8
9
10
11
12
13
public static void displayToken(String str,Analyzer a) {
        try {
            TokenStream stream = a.tokenStream("content",new StringReader(str));
            //创建一个属性,这个属性会添加流中,随着这个TokenStream增加
            CharTermAttribute cta = stream.addAttribute(CharTermAttribute.class);
            while(stream.incrementToken()) {
                System.out.print("["+cta+"]");
            }
            System.out.println();
        catch (IOException e) {
            e.printStackTrace();
        }
    }
1
2
3
4
5
6
7
8
9
public Map<String,Analyzer> toMap(String[] str,Analyzer ... analyzers){
        Map<String,Analyzer> analyzerMap = new HashMap<String,Analyzer>();
        int i =0;
        for(Analyzer a : analyzers){
            analyzerMap.put(str[i], a);
            i++;
        }
        return analyzerMap;
    }
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
@Test
    public void test01() {
        String[] str ={"StandardAnalyzer","StopAnalyzer","SimpleAnalyzer","WhitespaceAnalyzer"};
        Map<String,Analyzer> analyzerMap = new HashMap<String,Analyzer>();
         
        Analyzer a1 = new StandardAnalyzer(Version.LUCENE_35);
        Analyzer a2 = new StopAnalyzer(Version.LUCENE_35);
        Analyzer a3 = new SimpleAnalyzer(Version.LUCENE_35);
        Analyzer a4 = new WhitespaceAnalyzer(Version.LUCENE_35);
         
        analyzerMap = toMap(str,a1,a2,a3,a4);
         
        String txt = "this is my house,I am come from bilibili qiansongyi," +
                "My email is dumingjun@gmail.com,My QQ is 888168";
         
        for(String analyzer : analyzerMap.keySet()){
            System.out.println(analyzer);
            AnalyzerUtils.displayToken(txt, analyzerMap.get(analyzer));
            System.out.println("==============================");
        }
    }

6、中文分词

1
2
3
4
5
6
7
8
9
public void toMap(String txt,Analyzer ... analyzers){
        for(Analyzer a : analyzers){
            int start = a.toString().lastIndexOf(".")+1;
            int end = a.toString().lastIndexOf("@")-1;
            System.out.println(a.toString().substring(start, end));
            AnalyzerUtils.displayToken(txt, a);
            System.out.println("====================");
        }
    }
1
2
3
4
5
6
7
8
9
10
public void test02() {
        Analyzer a1 = new StandardAnalyzer(Version.LUCENE_35);
        Analyzer a2 = new StopAnalyzer(Version.LUCENE_35);
        Analyzer a3 = new SimpleAnalyzer(Version.LUCENE_35);
        Analyzer a4 = new WhitespaceAnalyzer(Version.LUCENE_35);
        Analyzer a5 = new MMSegAnalyzer(new File("D:\\lucene\\mmseg4j\\data"));
        String txt = "我来自中国广东省广州市天河区的小白";
         
        toMap(txt,a1,a2,a3,a4,a5);
    }

7、位置增量、位置偏移量、分词单元、分词器的类型

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
public static void displayAllTokenInfo(String str,Analyzer a) {
        try {
            TokenStream stream = a.tokenStream("content",new StringReader(str));
            //位置增量的属性,存储语汇单元之间的距离
            PositionIncrementAttribute pia = 
            stream.addAttribute(PositionIncrementAttribute.class);
            //每个语汇单元的位置偏移量
            OffsetAttribute oa = stream.addAttribute(OffsetAttribute.class);
            //存储每一个语汇单元的信息(分词单元信息)
            CharTermAttribute cta = stream.addAttribute(CharTermAttribute.class);
            //使用的分词器的类型信息
            TypeAttribute ta = stream.addAttribute(TypeAttribute.class);
            for(;stream.incrementToken();) {
                System.out.print(pia.getPositionIncrement()+":");
                System.out.print(cta+"["+oa.startOffset()+"-"+oa.endOffset()+"]-->"+ta.type()+"\n");
            }
        catch (Exception e) {
            e.printStackTrace();
        }
    }

8、停用分词器

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
public class MyStopAnalyzer extends Analyzer {
    @SuppressWarnings("rawtypes")
    private Set stops;
    @SuppressWarnings("unchecked")
    public MyStopAnalyzer(String[]sws) {
        //会自动将字符串数组转换为Set
        stops = StopFilter.makeStopSet(Version.LUCENE_35, sws, true);
        //将原有的停用词加入到现在的停用词
        stops.addAll(StopAnalyzer.ENGLISH_STOP_WORDS_SET);
    }
     
    public MyStopAnalyzer() {
        //获取原有的停用词
        stops = StopAnalyzer.ENGLISH_STOP_WORDS_SET;
    }
 
    @Override
    public TokenStream tokenStream(String fieldName, Reader reader) {
        //为这个分词器设定过滤链和Tokenizer
        return new StopFilter(Version.LUCENE_35,
               new LowerCaseFilter(Version.LUCENE_35, 
               new LetterTokenizer(Version.LUCENE_35,reader)), stops);
    }
 
}
1
2
3
4
5
6
7
8
@Test
    public void test04() {
        Analyzer a1 = new MyStopAnalyzer(new String[]{"I","you","hate"});
        Analyzer a2 = new MyStopAnalyzer();
        String txt = "how are you thank you I hate you";
        AnalyzerUtils.displayToken(txt, a1);
        AnalyzerUtils.displayToken(txt, a2);
    }

9、简单实现同义词索引

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public class MySameAnalyzer extends Analyzer {
    private SamewordContext samewordContext;
     
    public MySameAnalyzer(SamewordContext swc) {
        samewordContext = swc;
    }
 
    @Override
    public TokenStream tokenStream(String fieldName, Reader reader) {
        Dictionary dic = Dictionary.getInstance("D:\\lucene\\mmseg4j\\data");
        return new MySameTokenFilter(
                new MMSegTokenizer(new MaxWordSeg(dic), reader),samewordContext);
    }
 
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
public class MySameTokenFilter extends TokenFilter {
    private CharTermAttribute cta = null;
    private PositionIncrementAttribute pia = null;
    private AttributeSource.State current;
    private Stack<String> sames = null;
    private SamewordContext samewordContext;
 
    protected MySameTokenFilter(TokenStream input,SamewordContext samewordContext) {
        super(input);
        cta = this.addAttribute(CharTermAttribute.class);
        pia = this.addAttribute(PositionIncrementAttribute.class);
        sames = new Stack<String>();
        this.samewordContext = samewordContext;
    }
 
    @Override
    public boolean incrementToken() throws IOException {
        if(sames.size()>0) {
            //将元素出栈,并且获取这个同义词
            String str = sames.pop();
            //还原状态
            restoreState(current);
            cta.setEmpty();
            cta.append(str);
            //设置位置0
            pia.setPositionIncrement(0);
            return true;
        }
         
        if(!this.input.incrementToken()) return false;
         
        if(addSames(cta.toString())) {
            //如果有同义词将当前状态先保存
            current = captureState();
        }
        return true;
    }
     
    private boolean addSames(String name) {
        String[] sws = samewordContext.getSamewords(name);
        if(sws!=null) {
            for(String str:sws) {
                sames.push(str);
            }
            return true;
        }
        return false;
    }
     
 
}
1
2
3
4
5
6
7
8
9
10
11
12
13
public class SimpleSamewordContext2 implements SamewordContext {
     
    Map<String,String[]> maps = new HashMap<String,String[]>();
    public SimpleSamewordContext2() {
        maps.put("中国",new String[]{"天朝","大陆"});
    }
 
    @Override
    public String[] getSamewords(String name) {
        return maps.get(name);
    }
 
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
@Test
    public void test05() {
        try {
            Analyzer a2 = new MySameAnalyzer(new SimpleSamewordContext2());
            String txt = "我来自中国广东省广州市天河区的小白";
            Directory dir = new RAMDirectory();
            IndexWriter writer = new IndexWriter(dir,new IndexWriterConfig(Version.LUCENE_35, a2));
            Document doc = new Document();
            doc.add(new Field("content",txt,Field.Store.YES,Field.Index.ANALYZED));
            writer.addDocument(doc);
            writer.close();
            IndexSearcher searcher = new IndexSearcher(IndexReader.open(dir));
            TopDocs tds = searcher.search(new TermQuery(new Term("content","咱")),10);
//          Document d = searcher.doc(tds.scoreDocs[0].doc);
//          System.out.println(d.get("content"));
            AnalyzerUtils.displayAllTokenInfo(txt, a2);
        catch (CorruptIndexException e) {
            e.printStackTrace();
        catch (LockObtainFailedException e) {
            e.printStackTrace();
        catch (IOException e) {
            e.printStackTrace();
        }
    }

 

posted @ 2015-11-18 00:27  E_star  阅读(511)  评论(0编辑  收藏  举报