Codeforces Round #176 (Div. 2)

http://codeforces.com/contest/287

A:水。。。

B:  数学+贪心 或者 二分

题意:

给你k-1个如图形状的水管,他们的出水口分别为2,4,....k,只有一个总出水口,然后让你判断他们之间连接组成出水口为n的需要的最少的谁数,如果不能输出-1;

开始我用数学+贪心做的,结果忘记考虑一种情况WA了。

思路:

首先如果k>n我们只需要选择一个即可,这里注意n可能会出现1,1是不可能出来的,就是应为这里错了。然后我们计算总数,这里能够组和出来的最多的出水口总数为sum = (k*(k - 1))/2 + 1;

如果sum < n 那肯不行了,如果等于>= n那必定存在解,我们首先利用最大的来组成n首先选k,k - 1,k - 2,如果加到x出现了大与n的情况,那么我们肯定可以从那些小于x里面出一个来组成n,这里我计算了sum - n的差值,然后计算1 + 2 + x + .. = cha的x值,这就就是选择最多的组成cha的所需要的的谁数,然后看k - 1 - x就是用的最少的组成n的数量。

(x + 1)*x/2 == cha解一元二次方程即可。

二分的话,就是二分选择的最小的哪个水管,然后从最大的往前加。选则大于等n的最大的mid

数学:

View Code
#include <iostream>
#include <cstdio>
#include <cmath>
#include <vector>
#include <cstring>
#include <algorithm>
#include <string>
#include <set>
#include <functional>
#include <numeric>
#include <sstream>
#include <stack>
#include <map>
#include <queue>

#define CL(arr, val)    memset(arr, val, sizeof(arr))

#define lc l,m,rt<<1
#define rc m + 1,r,rt<<1|1
#define pi acos(-1.0)
#define ll __int64
#define L(x)    (x) << 1
#define R(x)    (x) << 1 | 1
#define MID(l, r)   (l + r) >> 1
#define Min(x, y)   (x) < (y) ? (x) : (y)
#define Max(x, y)   (x) < (y) ? (y) : (x)
#define E(x)        (1 << (x))
#define iabs(x)     (x) < 0 ? -(x) : (x)
#define OUT(x)  printf("%I64d\n", x)
#define lowbit(x)   (x)&(-x)
#define Read()  freopen("din.txt", "r", stdin)
#define Write() freopen("dout.txt", "w", stdout);


#define M 307
#define N 4100007
using namespace std;

ll n,k;
int main()
{
//    Read();
    int i,j;

    while (cin>>n>>k)
    {
        if (k >= n)
        {
            if (n >= 2)
            printf("1\n");
            else printf("0\n");
            continue;
        }
        else
        {
            ll sum = (k*(k - 1))/2 + 1;
            if (sum < n) printf("-1\n");
            else
            {
                ll cha = sum - n;
                ll no = (sqrt(1LL + 8LL*cha) - 1)/2;
                printf("%I64d\n",k - 1 - no);
            }
        }
    }
    return 0;
}

二分:

View Code
#include <iostream>
#include <cstdio>
#include <cmath>
#include <vector>
#include <cstring>
#include <algorithm>
#include <string>
#include <set>
#include <functional>
#include <numeric>
#include <sstream>
#include <stack>
#include <map>
#include <queue>

#define CL(arr, val)    memset(arr, val, sizeof(arr))

#define lc l,m,rt<<1
#define rc m + 1,r,rt<<1|1
#define pi acos(-1.0)
#define ll __int64
#define L(x)    (x) << 1
#define R(x)    (x) << 1 | 1
#define MID(l, r)   (l + r) >> 1
#define Min(x, y)   (x) < (y) ? (x) : (y)
#define Max(x, y)   (x) < (y) ? (y) : (x)
#define E(x)        (1 << (x))
#define iabs(x)     (x) < 0 ? -(x) : (x)
#define OUT(x)  printf("%I64d\n", x)
#define lowbit(x)   (x)&(-x)
#define Read()  freopen("din.txt", "r", stdin)
#define Write() freopen("dout.txt", "w", stdout);


#define M 307
#define N 4100007
using namespace std;

ll n,k,L,R;
int main()
{
//    Read();


    while (cin>>n>>k)
    {
        if (n == 1)
        {
            printf("0\n");
            continue;
        }
        L = 2; R = k;
        int ans = -1;
        while (L <= R)
        {
            ll mid = (L + R)/2;
            ll sum = (k + mid - 2)*(k - mid + 1)/2 + 1;
//            printf("%I64d %I64d\n",mid,sum);
            if (sum >= n)
            {
                ans = mid;
                L = mid + 1;
            }
            else R = mid - 1;
        }
        if (ans == -1)
        printf("-1\n");
        else
        printf("%I64d\n", k - ans + 1);

    }
    return 0;
}

 

C:

题意:

Ppi = n - i + 1; 给出n求一个满足的p数组。 如果不存在,输出-1

思路:
假设p1 = k;

Pp1 = n-> pk = n;

Ppk = n - k + 1  -> pn = n - k + 1;

Ppn - k + 1 = n - (n - k + 1) = k;

我们可以发现这里是每四个一循环。

我们让

p[i] = i + 1

p[i + 1] = pp[i] = n - i + 1;

p[n - i + 1] = pp[i + 1] = (n - i - 1) + 1 = n - i;

p[n - i] = pp[n - i + 1] = (n - n + i - 1) + 1 = i;

然后枚举即可,这里如果n%4 == 2 || 3的话是不存在结果的,代入几组数据就可以看出来。

View Code
#include <iostream>
#include <cstdio>
#include <cmath>
#include <vector>
#include <cstring>
#include <algorithm>
#include <string>
#include <set>
#include <functional>
#include <numeric>
#include <sstream>
#include <stack>
#include <map>
#include <queue>

#define CL(arr, val)    memset(arr, val, sizeof(arr))

#define lc l,m,rt<<1
#define rc m + 1,r,rt<<1|1
#define pi acos(-1.0)
#define ll __int64
#define L(x)    (x) << 1
#define R(x)    (x) << 1 | 1
#define MID(l, r)   (l + r) >> 1
#define Min(x, y)   (x) < (y) ? (x) : (y)
#define Max(x, y)   (x) < (y) ? (y) : (x)
#define E(x)        (1 << (x))
#define iabs(x)     (x) < 0 ? -(x) : (x)
#define OUT(x)  printf("%I64d\n", x)
#define lowbit(x)   (x)&(-x)
#define Read()  freopen("din.txt", "r", stdin)
#define Write() freopen("dout.txt", "w", stdout);


#define M 307
#define N 100007
using namespace std;

int a[N];
int n;
int main()
{

//    Read();
//    Write();
    int i,j;
    while (~scanf("%d",&n))
    {
        if (n%4 == 2 || n%4 == 3)
        {
            printf("-1\n");
            continue;
        }

        for (i = 1; i <= n/2; i += 2)
        {
            a[i] = i + 1;
            a[i + 1] = n - i + 1;
            a[n - i + 1] = n - i;
            a[n - i] = i;
        }
        if (n&1)
        {
            a[n/2 + 1] = n/2 + 1;
        }
        for (i = 1; i < n; ++i) printf("%d ",a[i]);
        printf("%d\n",a[i]);
    }
    return 0;

}

 

D:

题意:

就是给你n个数。然后 k取 [2~n]  分别执行如图操作,为你最后的结果

他的本意:

1 2 3 4 5

k == 2: 2 1 3 4 5(1放到2后边,3放到4后边)

k == 3: 1 3 2 5 4(2放到3后边,4放到5后边)

 

这样模拟,

我们发现没交换一次其实就是整个数组往后一道一个位置,例如k=3时,让2与4交换,然后超过了n之后4就与原来的长度+1交换,就行成了  1 3 2 5 4

这样模拟就可。

View Code
#include <iostream>
#include <cstdio>
#include <cmath>
#include <vector>
#include <cstring>
#include <algorithm>
#include <string>
#include <set>
#include <functional>
#include <numeric>
#include <sstream>
#include <stack>
#include <map>
#include <queue>

#define CL(arr, val)    memset(arr, val, sizeof(arr))

#define lc l,m,rt<<1
#define rc m + 1,r,rt<<1|1
#define pi acos(-1.0)
#define ll __int64
#define L(x)    (x) << 1
#define R(x)    (x) << 1 | 1
#define MID(l, r)   (l + r) >> 1
#define Min(x, y)   (x) < (y) ? (x) : (y)
#define Max(x, y)   (x) < (y) ? (y) : (x)
#define E(x)        (1 << (x))
#define iabs(x)     (x) < 0 ? -(x) : (x)
#define OUT(x)  printf("%I64d\n", x)
#define lowbit(x)   (x)&(-x)
#define Read()  freopen("din.txt", "r", stdin)
#define Write() freopen("dout.txt", "w", stdout);


#define M 307
#define N 2000007
using namespace std;

int a[N];
int n;

int main()
{
    int i,k;
    while (~scanf("%d",&n))
    {
        for (i = 1; i <= n; ++i) a[i] = i;

        for (k = 2; k <= n; ++k)
        {
            int st = k - 1;
            for (i = st; i + k <= n + k - 2; i += k)
            {
                swap(a[st],a[i + k]);
            }
            swap(a[st],a[n + k - 1]);
        }

        for (i = n; i < 2*n - 1; ++i) printf("%d ",a[i]);
        printf("%d\n",a[2*n - 1]);

    }
}

 

E:

题意:

话说,这题描述根本就看不懂。最后看了别人的代码才把题意弄懂,反过来再看题目,还是题目描述与题意扯不上关系呀。MD

这题就是给你n个数,这n个数代表了括号,整数代表左括号,负数代表右括号,给出一个p数组,全部为整数, pi = |xi| (1 ≤ i ≤ n),q数组,表明Xqi为负数。 让我们根据p和q求出满足条件的X,如果不存在输出NO

思路:

我们只要倒着用栈模拟就行,如果出现的是右括号直接放进栈去,如果出现了左括号,看看最近的栈顶的是否能够与之匹配如果不匹配,那么他在X中必定为右括号,然后这样一直匹配下去,如果最后栈顶为空,那么存在解,否则无解。

View Code
#include <iostream>
#include <cstdio>
#include <cmath>
#include <vector>
#include <cstring>
#include <algorithm>
#include <string>
#include <set>
#include <functional>
#include <numeric>
#include <sstream>
#include <stack>
#include <map>
#include <queue>

#define CL(arr, val)    memset(arr, val, sizeof(arr))

#define lc l,m,rt<<1
#define rc m + 1,r,rt<<1|1
#define pi acos(-1.0)
#define ll long long
#define L(x)    (x) << 1
#define R(x)    (x) << 1 | 1
#define MID(l, r)   (l + r) >> 1
#define Min(x, y)   (x) < (y) ? (x) : (y)
#define Max(x, y)   (x) < (y) ? (y) : (x)
#define E(x)        (1 << (x))
#define iabs(x)     (x) < 0 ? -(x) : (x)
#define OUT(x)  printf("%I64d\n", x)
#define lowbit(x)   (x)&(-x)
#define Read()  freopen("din.txt", "r", stdin)
#define Write() freopen("dout.txt", "w", stdout);


#define M 150
#define N 1000007
using namespace std;

int a[N],st[N];

int main()
{
    int i,j;
    int n,m;
    int x;
    while (~scanf("%d",&n))
    {
        for (i = 0; i < n; ++i) scanf("%d",&a[i]);
        scanf("%d",&m);
        for (j = 0; j < m; ++j)
        {
            scanf("%d",&x);
            a[x - 1]*=-1;
        }
        int len = 0;
        for (i = n - 1; i >= 0; --i)
        {
            if (a[i] < 0)
            {
                st[len++] = a[i];
            }
            else
            {
                if (len != 0 && st[len - 1] == -a[i]) len--;
                else st[len++] = (a[i] *= -1);
            }
        }
        if (len) printf("NO\n");
        else
        {
            printf("YES\n");
            for (i = 0; i < n - 1; ++i) printf("%d ",a[i]);
            printf("%d\n",a[i]);
        }
    }
    return 0;
}

 

 

 

 

posted @ 2013-03-30 11:12  E_star  阅读(404)  评论(0编辑  收藏  举报