ZOJ 4772 Treasure Hunt I 树形DP(背包) && hdu The Ghost Blows Light 树形DP(背包)

http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4772

题意:

给定n个点n-1条边,每个点对应一个财富值,走每条路径都对应着一个所需要的时间,问在m天内从k出发然后回到k,所能取得到的最大财富值 v1 V2 ....V1.

思路:

由于题目给定的是一棵生成树,所以从k出发后必须按原路返回才可满足条件,也就是每条边走两次。

dp[k][m]表示从k出发的又回到k的路径所取得的最大值。就是相当于往容量为m的包里放物品一样。每个点对应一个包。

View Code
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <set>
#include <map>
#include <string>

#define CL(a,num) memset((a),(num),sizeof(a))
#define iabs(x)  ((x) > 0 ? (x) : -(x))
#define Min(a,b) (a) > (b)? (b):(a)
#define Max(a,b) (a) > (b)? (a):(b)

#define ll __int64
#define inf 0x7f7f7f7f
#define MOD 100000007
#define lc l,m,rt<<1
#define rc m + 1,r,rt<<1|1
#define pi acos(-1.0)
#define test puts("<------------------->")
#define maxn 100007
#define M 207
#define N 107
using namespace std;
//freopen("din.txt","r",stdin);

struct node{
    int v,w;
    int next;
}g[N*2];

int head[N],ct,val[N];
bool vt[N];
int dp[N][M];
int m,n;

void add(int u,int v,int w){
    g[ct].v = v;
    g[ct].w = w;
    g[ct].next = head[u];
    head[u] = ct++;
}
void dfs(int u){
    int i;
    vt[u] = true;
    for (i = head[u]; i != -1; i = g[i].next){
        int v = g[i].v;
        int w = 2*g[i].w;
        if (vt[v]) continue;
        dfs(v);
        //关键是这里不好理解,相当于分组背包
        for (int k = m; k >= w; --k){
            for (int j = 0; j <= k - w; ++j){
                dp[u][k] = max(dp[u][k],dp[u][k - w - j] + dp[v][j]);
            }
        }
    }
    for (i = 0; i <= m; ++i) dp[u][i] += val[u];
}
int main(){
    //freopen("din.txt","r",stdin);
    int i,k;
    int u,v,w;
    while (~scanf("%d",&n)){
        ct = 0; CL(head,-1);
        for (i = 1; i <= n; ++i) scanf("%d",&val[i]);
        for (i = 2; i <= n; ++i){
            scanf("%d%d%d",&u,&v,&w);
            add(u,v,w);
            add(v,u,w);
        }
        scanf("%d%d",&k,&m);
        CL(vt,false); CL(dp,0);
        dfs(k);
        printf("%d\n",dp[k][m]);
    }
    return 0;
}

 

http://acm.hdu.edu.cn/showproblem.php?pid=4276

题意:

给定n个点n-1条边,每个点对应一个财富值,走每条路径都对应着一个所需要的时间,问在T天内从1出发到N做能取得的最大财富值。

思路:

这题目就是上边一题的加强版,我们首先同spfa求一条最短路先不管财富值得大小,弱最小距离满足条件即可找最大财富值了,最短路一定会走,我们通过不在最短路上的点来扩充财富值,那么不在最短路上的点要么不走要么走两次。这样dp就好了,和上边一样。

View Code
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <set>
#include <map>
#include <string>

#define CL(a,num) memset((a),(num),sizeof(a))
#define iabs(x)  ((x) > 0 ? (x) : -(x))
#define Min(a,b) (a) > (b)? (b):(a)
#define Max(a,b) (a) > (b)? (a):(b)

#define ll __int64
#define inf 0x7f7f7f7f
#define MOD 100000007
#define lc l,m,rt<<1
#define rc m + 1,r,rt<<1|1
#define pi acos(-1.0)
#define test puts("<------------------->")
#define maxn 100007
#define M 507
#define N 107
using namespace std;
//freopen("din.txt","r",stdin);

struct node{
    int v,w;
    int next;
}g[N];
int head[N],ct;
int dis[N],dp[N][M],val[N];
int pre[N],path[N];
bool vt[N];
int n,T;

void add(int u,int v,int w){
    g[ct].v = v;
    g[ct].w = w;
    g[ct].next = head[u];
    head[u] = ct++;
}
void spfa(){
    queue<int>q;
    int i;
    CL(vt,false); CL(pre,-1);
    for (i = 1; i <= n; ++i) dis[i] = inf;
    dis[1] = 0;   vt[1] = true;
    q.push(1);
    while (!q.empty()){
        int u = q.front(); q.pop();
        for (i = head[u]; i != -1; i = g[i].next){
            int v = g[i].v;
            int w = g[i].w;
            if (dis[v] > dis[u] + w){
                pre[v] = u;//记录父节点
                path[v] = i;//记录路径编号
                dis[v] = dis[u] + w;
                if (!vt[v]){
                    vt[v] = true;
                    q.push(v);
                }
            }
        }
        vt[u] = false;
    }
    for (i = n; i != 1; i = pre[i]){//置0
        g[path[i]].w = 0;
    }
}
void dfs(int u){
    vt[u] = true;
    for (int i = head[u]; i != -1; i = g[i].next){
        int v = g[i].v;
        int w = g[i].w*2;
        if (vt[v]) continue;
        dfs(v);
        for (int k = T; k >= w; --k){
            for (int j = 0; j <= k - w; ++j)
            dp[u][k] = max(dp[u][k],dp[u][k - w - j] + dp[v][j]);//  这里当w为0时保证能够选入
        }
    }
    for (int i = 0; i <= T; ++i) dp[u][i] += val[u];
}
int main(){
    int i;
    int u,v,w;
    while (~scanf("%d%d",&n,&T)){
        ct = 0;
        CL(head,-1);
        for (i = 2; i <= n; ++i){
            scanf("%d%d%d",&u,&v,&w);
            add(u,v,w);
            add(v,u,w);
        }
        for (i = 1; i <= n; ++i) scanf("%d",&val[i]);
        spfa();
        //spfa求最短路后不满足条件
        if (dis[n] > T){
            printf("Human beings die in pursuit of wealth, and birds die in pursuit of food!\n");
            continue;
        }
        T -= dis[n];
        CL(vt,false); CL(dp,0);
        dfs(1);
        printf("%d\n",dp[1][T]);
    }
    return 0;
}
posted @ 2012-09-16 10:36  E_star  阅读(193)  评论(0编辑  收藏  举报