2012 Multi-University Training Contest 10

官方解题报告:http://page.renren.com/601081183/note/867254911

1001 Number Sequence 容斥定理+组合数 

hdu http://acm.hdu.edu.cn/showproblem.php?pid=4390

题意:

给你b1,b2,...bn个数,求存在多少个这样的序列a1,a2,a3....an满足a1*a2*a3*a3...an = b1*b2...*bn; ai>1

思路:

首先多谢日华兄热心的给我讲解,现在算是明白点了吧。a1*a2...*an = sum;我们首先将sum的所有质因子分解出来,然后就是将质因子分配到N个ai里面求有多少种可能。

sum = p1^k1*p2^k2*p3^k3*....*pn^kn

首先我们不考虑ai>1.那么我们的结果就是c(n + k1 - 1,k1 - 1)*c(n + k2 - 1,k2 -1)......*c(n + k3 - 1,k3 - 1); (c(n + ki - 1,ki -1)排列里面的挡板法) 只用组合数就可求得,二这里ai>1 也就是说每个ai必须分配到一个素因子,所以我们这里用容斥定理来求,枚举n到0表示a1 - an要分配素因子的位数,当有n位时时我们要求的解,可是这里用上述办法求的话就包含了ai = 1的情况情况,所以我们要去掉多加的。就用容斥定理;

View Code
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <set>
#include <map>
#include <string>

#define CL(a,num) memset((a),(num),sizeof(a))
#define iabs(x)  ((x) > 0 ? (x) : -(x))
#define Min(a,b) (a) > (b)? (b):(a)
#define Max(a,b) (a) > (b)? (a):(b)

#define ll __int64
#define inf 0x7f7f7f7f
#define MOD 1000000007ll
#define lc l,m,rt<<1
#define rc m + 1,r,rt<<1|1
#define pi acos(-1.0)
#define test puts("<------------------->")
#define maxn 1000007
#define N 1000005
#define M 200007
using namespace std;

int prime[N],idx;
int cnt[N],num[N],m;
int n;
bool hash[maxn];
ll c[90][90];

void init()
{
    int i,j;
    CL(c,0);
    for (i = 0; i < 90; ++i)//求组合数
    c[i][i] = c[i][0] = 1;
    for (i = 1; i < 90; ++i)
    {
        for (j = 1; j < i; ++j)
        {
            c[i][j] = (c[i - 1][j] + c[i - 1][j - 1])%MOD;
        }
    }
    //筛选素数
    CL(hash,false); idx = 0;
    for (i = 2; i*i < maxn; ++i)
    {
        if (!hash[i])
        {

            for (j = i + i; j < maxn; j += i)
            {
                hash[j] = true;
            }
        }
    }
    for (i = 2; i < maxn; ++i)
    {
        if (!hash[i])  prime[idx++] = i;
    }
}
void gao(int a)//枚举出sum的质因子即质因子个数
{
    int i;
    for (i = 0; i < idx && a != 1; ++i)
    {
        while (a % prime[i] == 0)
        {
            cnt[i]++;
            a /= prime[i];
        }
    }
}
ll cal(int cc)
{
    ll sum = c[n][cc];//首先从n个位置去cc个分配素因子
    for (int i = 0; i < m; ++i)
    {
        sum *= c[cc + num[i] - 1][cc - 1];//将每个素因子分配
        if (sum >= MOD) sum %= MOD;
    }
    return sum;
}
int main()
{
    //freopen("din.txt","r",stdin);
    int i,a;
    init();
    while (~scanf("%d",&n))
    {
        CL(cnt,0);
        for (i = 0; i < n; ++i)
        {
            scanf("%d",&a);
            gao(a);
        }
        m = 0;
        for (i = 0; i < idx; ++i)
        {
            if (cnt[i]) num[m++] = cnt[i];
        }
        ll ans = 0;
        int flag = 1;
        for (i = n; i >= 0; --i)
        {
            //ans += flag*cal(i);
            if(flag == -1) ans -= cal(i);//容斥处理
            else ans += cal(i);
            ans = (ans%MOD + MOD)%MOD;
            flag *= -1;
        }
        printf("%I64d\n",ans);
    }
    return 0;
}

 

1004 hdu 4393 Throw nails

http://acm.hdu.edu.cn/showproblem.php?pid=4393

 题意:

n名队员参加自行车比赛,在第一秒内每个人都可以行走fi的距离,随后每个人都以各自的速度vi匀速往前前进,在每一秒LZ会扔出一个钉子,是走在最前边的选手爆胎淘汰,问输出选手们被淘汰的顺序,ps:如果行走的距离相同即两人在都以为置时,优先选择标号小的爆胎。

思路:

比赛时,只想到了O(N^2)的解法,这样肯定会超时,想了很长时间还是没有想到哎思路啊.这里关键在于速度速度最大才能达到100我们只需要开一个优先队列数组q[1..100]每次在这些优先队列里面取出f最大的,因为属于同样队列的速度肯定相同所以F大的肯定排在前边,然后就是取最值的问题了,时间复杂度为O(N*100).这里真的很巧妙就是没想出来。。

View Code
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <set>
#include <map>
#include <string>

#define CL(a,num) memset((a),(num),sizeof(a))
#define iabs(x)  ((x) > 0 ? (x) : -(x))
#define Min(a,b) (a) > (b)? (b):(a)
#define Max(a,b) (a) > (b)? (a):(b)

#define ll long long
#define inf 0x7f7f7f7f
#define MOD 100000007
#define lc l,m,rt<<1
#define rc m + 1,r,rt<<1|1
#define pi acos(-1.0)
#define test puts("<------------------->")
#define maxn 50004
#define N 107
#define M 200007
using namespace std;
struct node
{
    int f,v;
    int pos;
    friend bool operator < (const node &a,const node &b)
    {
        if (a.f != b.f) return a.f < b.f;
        else return a.pos >  b.pos;
    }
}tp;
priority_queue<node>q[N];

int main()
{
    //freopen("din.txt","r",stdin);

    int t,cas = 1;
    int n,i,j;
    scanf("%d",&t);
    while (t--)
    {
        printf("Case #%d:\n",cas++);
        scanf("%d",&n);
        for (i = 1; i <= 100; ++i)
        {
            while (!q[i].empty()) q[i].pop();
        }
        for (i = 1; i <= n; ++i)
        {
            scanf("%d%d",&tp.f,&tp.v);
            tp.pos = i;
            q[tp.v].push(tp);
        }

        int tmp1,tmp2;
        int MIN;
        for (i = 0; i < n; ++i)
        {
            MIN = -inf;
            for (j = 1; j <= 100; ++j)
            {
                if (!q[j].empty())
                {
                    tp = q[j].top();
                    if (MIN < i*j + tp.f)
                    {
                        MIN = i*j + tp.f;
                        tmp1 = j; tmp2 = tp.pos;
                    }
                    else if (MIN == i*j + tp.f && tmp2 > tp.pos)//注意这里距离相同时,取pos最小的
                    {
                        tmp1 = j; tmp2 = tp.pos;
                    }
                }
            }
            q[tmp1].pop();
            if (i != n - 1)
            printf("%d ",tmp2);
            else
            printf("%d\n",tmp2);
        }
    }
    return 0;
}

1005 hdu 4394  http://acm.hdu.edu.cn/showproblem.php?pid=4394

题意:

M2%10x=N (x=0,1,2,3....) 给你N求最小的非负整数M。。。

思路:

这里N到了10^9次方,计算几个式子可以发现,对于b为数的平方,他的平方后的数的后b为也就由它确定了,我们由N去枚举找M,最高只要枚举到第九位也就可以了。

23*23 = 329 123*123 = 15129 3123*3123 = 9753129 观察他们就会发现。

View Code
#define MOD 100000007
#define lc l,m,rt<<1
#define rc m + 1,r,rt<<1|1
#define pi acos(-1.0)
using namespace std;

ll len[] = {1,10,100,1000,10000,100000,1000000,10000000,100000000,1000000000,10000000000ll};
int ans;
int getlen(int x)
{
    int i;
    for (i = 0; ; ++i)
    if (len[i] > x) return i;
}
void dfs(int x,int l,int xx,int maxL)
{
    int i;
    if (l == maxL)
    {
        if (ans > x) ans = x;
        return ;
    }
    for (i = 0; i < 10; ++i)
    {
        ll tmp = len[l]*i + x;
        if ((tmp*tmp)%len[l + 1] == xx%len[l + 1])//满足继续枚举
        dfs(tmp,l + 1,xx,maxL);
    }
}
int main()
{
    int t,n;
    scanf("%d",&t);
    while (t--)
    {
        ans = inf;
        scanf("%d",&n);
        int maxL = getlen(n);
        dfs(0,0,n,maxL);
        if (ans == inf) printf("None\n");
        else printf("%d\n",ans);
    }
}

 

1007 hdu 4396 More lumber is required

http://acm.hdu.edu.cn/showproblem.php?pid=4396

 

思路:二维SPFA:

View Code
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <set>
#include <map>
#include <string>

#define CL(a,num) memset((a),(num),sizeof(a))
#define iabs(x)  ((x) > 0 ? (x) : -(x))
#define Min(a,b) (a) > (b)? (b):(a)
#define Max(a,b) (a) > (b)? (a):(b)

#define maxn 50004
#define N 5007
#define M 200007
#define K 507
#define ll long long
#define inf 0x7f7f7f7f
#define MOD 100000007
#define lc l,m,rt<<1
#define rc m + 1,r,rt<<1|1
#define pi acos(-1.0)
using namespace std;

int dis[N][55];
struct node
{
    int v;
    int w;
    int next;
}g[M];

struct mode
{
    int pos;
    int k;
}tp;
int head[N],ct;
int n,m,S,T,ki;
bool vt[N][55];

void init()
{
    ct = 0;
    CL(head,-1); CL(vt,false);
}
void add(int u,int v,int w)
{
    g[ct].v = v; g[ct].w = w;
    g[ct].next = head[u];
    head[u] = ct++;
}
void spfa()
{
    int i,j;
    for (i = 0; i <= n; ++i)
    {
        for (j = 0; j <= ki; ++j)
        {
            dis[i][j] = inf;
        }
    }
    dis[S][0] = 0;
    tp.k = 0; tp.pos = S;
    queue<mode>q;
    q.push(tp);
    vt[S][0] = true;
    while (!q.empty())
    {
        mode cur = q.front(); q.pop();
        int u = cur.pos;
        vt[u][cur.k] = false;
        for (i = head[u]; i != -1; i = g[i].next)
        {
            int v = g[i].v;
            int k = cur.k;
            int w = g[i].w;
            int tmp = k + 1;
            if (tmp > ki) tmp = ki;
            if(dis[v][tmp] > dis[u][k] + w)
            {
                dis[v][tmp] = dis[u][k] + w;

                if (!vt[v][tmp])
                {
                    vt[v][tmp] = true;
                    tp.k = tmp;
                    tp.pos = v;
                    q.push(tp);
                }
            }
        }
    }
}
int main()
{
   //freopen("din.txt","r",stdin);
    int i,u,v,w;
    while (~scanf("%d%d",&n,&m))
    {
        init();
        for (i = 0; i < m; ++i)
        {
            scanf("%d%d%d",&u,&v,&w);
            add(u,v,w);
            add(v,u,w);
        }

        scanf("%d%d%d",&S,&T,&ki);
        if (ki%10 == 0) ki /= 10;
        else ki = ki/10  + 1;
        spfa();

        if (dis[T][ki] == inf) puts("-1");
        else printf("%d\n",dis[T][ki]);
    }
    return 0;
}

 

 

 

posted @ 2012-08-24 11:22  E_star  阅读(304)  评论(0编辑  收藏  举报