Codeforces Looksery Cup 2015

在学考复习的时候偷偷打了这场cf,今天才有时间把题目都订正,囧

B

题目大意:n个人,每个人向一些人发邮件(都会给自己发),然后构造一个确定某些人发邮件的方案,使得每个人收到的邮件 $\neq a[i]$

题解:因为每个人都会给自己发,所以当某人$= a[i]$时就把他自己选上

 

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cmath>
 4 #include <cstring>
 5 #include <algorithm>
 6 using namespace std;
 7 #define rep(i, l, r) for (int i = l; i <= r; i++)
 8 #define drep(i, r, l) for (int i = r; i >= l; i--)
 9 typedef long long ll;
10 const int N = 108;
11 int n, a[N], d[N], ans[N];
12 char Map[N][N];
13 int main()
14 {
15 #ifndef ONLINE_JUDGE
16     freopen("input.txt","r",stdin);
17     //freopen("output.txt","w",stdout);
18 #endif
19     scanf("%d", &n);
20     rep(i, 1, n) scanf("%s", Map[i] + 1);
21     rep(i, 1, n) scanf("%d", &a[i]);
22     bool flag = false;
23     while (!flag)
24     {
25         flag = 1;
26         rep(i, 1, n) if (a[i] == d[i]) 
27         {
28             flag = 0;
29             ans[++ans[0]] = i;
30             rep(j, 1, n) if (Map[i][j] == '1') d[j]++;
31             break;
32         }
33     }
34     sort(ans + 1, ans + ans[0] + 1);
35     printf("%d\n", ans[0]);
36     rep(i, 1, ans[0]) printf("%d ", ans[i]); printf("\n");
37 #ifndef ONLINE_JUDGE
38     fclose(stdin); fclose(stdout);
39 #endif
40     return 0;
41 }
B

 

 

C

题目大意:S和D玩游戏,S先手。一共n堆石头,每次可以拿走一堆,剩下k堆就结束。S希望最后留下的石头总数是奇数,D希望是偶数

题解:特判n = k的情况,然后注意到最后一次操作时,如果奇偶石头都有,那么操作的人就获胜了。根据这个来分类讨论

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cmath>
 4 #include <cstring>
 5 #include <algorithm>
 6 using namespace std;
 7 #define rep(i, l, r) for (int i = l; i <= r; i++)
 8 #define drep(i, r, l) for (int i = r; i >= l; i--)
 9 typedef long long ll;
10 const int N = 2e5 + 8;
11 int n, k, a[N], c[2];
12 void out(int x)
13 //x:最后的奇偶性 
14 {
15     printf("%s\n", x == 1 ? "Stannis " : "Daenerys");
16 }
17 void solve()
18 //先手奇数,后手偶数 
19 {
20     if (!c[1]) {out(0); return;}
21     if (!c[0]) {out(k & 1); return;}
22     if ((n - k) & 1)
23     //先手控制最后一步 
24     {
25         int x = (n - k) / 2 + 1, y = n - k - x; x--; 
26         if (y >= c[1]) out(0);
27         else if (y < c[0]) out(1);
28         else out(k & 1);
29     }
30     else
31     //后手控制最后一步 
32     {
33         int x = (n - k) / 2, y = n - k - x; y--;
34         if (x >= c[0]) out(k & 1);
35         else out(0);
36     }
37 }
38 int main()
39 {
40 #ifndef ONLINE_JUDGE
41     freopen("input.txt", "r", stdin);
42     //freopen("output.txt", "w", stdout);
43 #endif
44     scanf("%d%d", &n, &k);
45     rep(i, 1, n) scanf("%d", &a[i]), c[(a[i] & 1) ? 1 : 0]++;
46     if (n == k)
47     {
48         out(c[1] & 1);
49         return 0;
50     }
51     solve();
52 #ifndef ONLINE_JUDGE
53     fclose(stdin); fclose(stdout);
54 #endif
55     return 0;
56 }
C

 

 

D

题目大意:给一个$n \times m$的矩阵,矩阵有黑白格子,选择最少的前缀矩阵,使得可以计算所有黑格子上的权值和-白格子权值和

题解:倒着扫一遍,贪心选择,使得白格子是-1,黑格子是1

D

 

 

E

不会

 

F

题目大意: 给定一个序列,求有多少个长度大于等于2的区间满足区间和$-$区间最大值是$k$的倍数

题解: 递归解决。假设现在处理区间$[l, r]$,先找到最大值,然后只遍历短的那一边,计算当前的和,然后算出另一边应该是多少,则问题变成了求一段区间等于某个值的有多少个,可以用主席树解决

时间复杂度$O(n{log^2}n)$

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
#define rep(i, l, r) for (int i = l; i <= r; i++)
#define drep(i, r, l) for (int i = r; i >= l; i--)
typedef long long ll;
const int N = 3e5 + 8, Log = 23;
int n, k, tot, a[N], sum[N], st[Log][N], son[N], rt[N];
ll ans;
struct Node
{
    int l, r, s;
}t[N * Log];
void Insert(int x, int o, int l, int r, int p, int d)
{
    t[x].s = t[o].s + d;
    if (l == r) return;
    int mid = l + r >> 1;
    if (p <= mid) t[x].r = t[o].r, Insert(t[x].l = ++tot, t[o].l, l, mid, p, d);
    else t[x].l = t[o].l, Insert(t[x].r = ++tot, t[o].r, mid + 1, r, p, d);
}
int query(int x, int o, int l, int r, int p)
{
    if (l == r) return t[x].s - t[o].s;
    int mid = l + r >> 1;
    if (p <= mid) return query(t[x].l, t[o].l, l, mid, p);
    return query(t[x].r, t[o].r, mid + 1, r, p);
}
void init()
{
    rep(i, 1, n) 
    {
        son[i] = son[i - 1];
        if ((1 << son[i] + 1) == i) son[i]++; 
    }
    rep(i, 1, n) st[0][i] = i;
    rep(i, 1, son[n])
        rep(j, 1, n)
        if (j + (1 << i) - 1 <= n)
        {
            int x = st[i - 1][j], y = st[i - 1][j + (1 << i - 1)];
            st[i][j] = a[x] > a[y] ? x : y;
        }
    rep(i, 0, n)
    {
        if (i) sum[i] = (sum[i - 1] + a[i]) % k;
        Insert(rt[i + 1] = ++tot, rt[i], 0, k - 1, sum[i], 1);
    }
}
int stquery(int l, int r)
{
    int k = son[r - l + 1];
    int x = st[k][l], y = st[k][r - (1 << k) + 1];
    return a[x] > a[y] ? x : y;
}
void solve(int l, int r)
{
    if (l == r) {ans++; return;}
    if (l > r) return;
    int p = stquery(l, r);
    //printf("_______%d %d %d\n", l, r, p);
    ll tmp = ans;
    if (p - l + 1 <= r - p + 1)
    {
        int s = 0;
        drep(i, p, l)
        {
            if (i != p) s = (s + a[i]) % k;
            int x = (-s + k + sum[p]) % k;
            ans += query(rt[r + 1], rt[p], 0, k - 1, x);
        }
    }
    else
    {
        int s = 0;
        rep(i, p, r)
        {
            if (i != p) s = (s + a[i]) % k;
            int x = (sum[p - 1] + k - (-s + k)) % k;
            //printf("%d %d %d\n", x, p - 1, max(l - 2, 0));
            ans += query(rt[p], rt[l - 1], 0, k - 1, x); 
        }
    }
    //printf("%I64d\n", ans - tmp);
    solve(l, p - 1); solve(p + 1, r);
}
int main()
{
#ifndef ONLINE_JUDGE
    freopen("input.txt","r",stdin);
    //freopen("output.txt","w",stdout);
#endif
    scanf("%d%d", &n, &k);
    rep(i, 1, n) scanf("%d", &a[i]);
    init();
    solve(1, n);
    ans -= n;
    printf("%I64d\n", ans);
#ifndef ONLINE_JUDGE
    fclose(stdin); fclose(stdout);
#endif
    return 0;
}
F

 

 

G

题目大意:给一个序列,每次可以交换$a[i]$和$a[i + 1]$,但是交换前$a[i]$要给一块钱给$a[i + 1]$,如果$a[i]$为$0$就不能交换,求最后的序列,使得序列不降

题解: 如果把n个数放在楼梯上(也就是$a[i] + i$),那么交换两个数就相当于把楼梯这两级包括上面的一起交换。显然要把高的往后面放。所以直接按照$a[i] + i$排序,然后再复原,检验答案

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cmath>
 4 #include <cstring>
 5 #include <algorithm>
 6 using namespace std;
 7 #define rep(i, l, r) for (int i = l; i <= r; i++)
 8 #define drep(i, r, l) for (int i = r; i >= l; i--)
 9 typedef long long ll;
10 const int N = 200008;
11 int n, a[N];
12 int main()
13 {
14 #ifndef ONLINE_JUDGE
15     freopen("input.txt","r",stdin);
16     //freopen("output.txt","w",stdout);
17 #endif
18     scanf("%d", &n);
19     rep(i, 1, n) scanf("%d", &a[i]), a[i] += i;
20     sort(a + 1, a + n + 1);
21     rep(i, 1, n) a[i] -= i;
22     rep(i, 1, n - 1) if (a[i] > a[i + 1]) 
23     {
24         printf(":(\n"); return 0;
25     }
26     rep(i, 1, n) printf("%d ", a[i]); printf("\n");
27 #ifndef ONLINE_JUDGE
28     fclose(stdin); fclose(stdout);
29 #endif
30     return 0;
31 }
G

 

 

H

题目大意:给出矩阵$A$,构造权值为0矩阵$B$,使得$A - B$每一项绝对值的最大值最小

题解:二分答案,然后A的四个值变成了四个范围,然后求出$ac$和$bd$的范围,判断是否相交。注意因为有负数所以最小值乘最小值不一定就是最小值

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cmath>
 4 #include <cstring>
 5 #include <algorithm>
 6 using namespace std;
 7 #define rep(i, l, r) for (int i = l; i <= r; i++)
 8 #define drep(i, r, l) for (int i = r; i >= l; i--)
 9 typedef long long ll;
10 typedef double real;
11 #define double long double
12 const double eps = 1e-10;
13 int a, b, c, d;
14 double ans;
15 double getmin(double x, double y, double z)
16 {
17     double v1 = (x - z) * (y - z);
18     double v2 = (x + z) * (y - z);
19     double v3 = (x + z) * (y + z);
20     double v4 = (x - z) * (y + z);
21     return min(v1, min(v2, min(v3, v4)));
22 }
23 double getmax(double x, double y, double z)
24 {
25     double v1 = (x - z) * (y - z);
26     double v2 = (x + z) * (y - z);
27     double v3 = (x + z) * (y + z);
28     double v4 = (x - z) * (y + z);
29     return max(v1, max(v2, max(v3, v4)));
30 }
31 int main()
32 {
33 #ifndef ONLINE_JUDGE
34     freopen("input.txt","r",stdin);
35     //freopen("output.txt","w",stdout);
36 #endif
37     scanf("%d%d", &a, &b);
38     scanf("%d%d", &c, &d);
39     double l = 0, r = 1e9;
40     while (fabs(r - l) > eps)
41     {
42         double mid = (l + r) / 2.0;
43         double l1 = getmin(a, d, mid);
44         double r1 = getmax(a, d, mid);
45         double l2 = getmin(b, c, mid);
46         double r2 = getmax(b, c, mid);
47         if (r2 < l1 || l2 > r1) l = mid;
48         else r = mid;
49     }
50     printf("%.10lf\n", (real)l);
51 #ifndef ONLINE_JUDGE
52     fclose(stdin); fclose(stdout);
53 #endif
54     return 0;
55 }
H

 

posted on 2015-06-15 11:47  Dyzerjet  阅读(287)  评论(0编辑  收藏  举报