LeetCode 759. Employee Free Time
原题链接在这里:https://leetcode.com/problems/employee-free-time/description/
题目:
We are given a list schedule
of employees, which represents the working time for each employee.
Each employee has a list of non-overlapping Intervals
, and these intervals are in sorted order.
Return the list of finite intervals representing common, positive-length free time for all employees, also in sorted order.
Example 1:
Input: schedule = [[[1,2],[5,6]],[[1,3]],[[4,10]]] Output: [[3,4]] Explanation: There are a total of three employees, and all common free time intervals would be [-inf, 1], [3, 4], [10, inf]. We discard any intervals that contain inf as they aren't finite.
Example 2:
Input: schedule = [[[1,3],[6,7]],[[2,4]],[[2,5],[9,12]]] Output: [[5,6],[7,9]]
(Even though we are representing Intervals
in the form [x, y]
, the objects inside are Intervals
, not lists or arrays. For example, schedule[0][0].start = 1, schedule[0][0].end = 2
, and schedule[0][0][0]
is not defined.)
Also, we wouldn't include intervals like [5, 5] in our answer, as they have zero length.
Note:
schedule
andschedule[i]
are lists with lengths in range[1, 50]
.0 <= schedule[i].start < schedule[i].end <= 10^8
.
题解:
k条已经排好序的链表. 利用minHeap进行merge.
先把每个表头放在minHeap中. minHeap按照指向的Interval start排序.
poll出来的就是当前最小start的interval. 如果标记的时间比这个interval的start还小就说明出现了断裂也就是空余时间.
把标记时间增大到这个interval的end, 并且把这个interval所在链表的后一位加入minHeap中.
Time Complexity: O(nlogk). k是employee的个数, schedule.size(). n是一共有多少interval.
Space: O(k).
AC Java:
1 /** 2 * Definition for an interval. 3 * public class Interval { 4 * int start; 5 * int end; 6 * Interval() { start = 0; end = 0; } 7 * Interval(int s, int e) { start = s; end = e; } 8 * } 9 */ 10 class Solution { 11 public List<Interval> employeeFreeTime(List<List<Interval>> schedule) { 12 List<Interval> res = new ArrayList<Interval>(); 13 PriorityQueue<Node> minHeap = new PriorityQueue<Node>((a,b) -> 14 schedule.get(a.employee).get(a.index).start - schedule.get(b.employee).get(b.index).start); 15 16 int start = Integer.MAX_VALUE; 17 for(int i = 0; i<schedule.size(); i++){ 18 minHeap.add(new Node(i, 0)); 19 start = Math.min(start, schedule.get(i).get(0).start); 20 } 21 22 while(!minHeap.isEmpty()){ 23 Node cur = minHeap.poll(); 24 if(start < schedule.get(cur.employee).get(cur.index).start){ 25 res.add(new Interval(start, schedule.get(cur.employee).get(cur.index).start)); 26 } 27 28 start = Math.max(start, schedule.get(cur.employee).get(cur.index).end); 29 cur.index++; 30 if(cur.index < schedule.get(cur.employee).size()){ 31 minHeap.add(cur); 32 } 33 } 34 35 return res; 36 } 37 } 38 39 class Node{ 40 int employee; 41 int index; 42 public Node(int employee, int index){ 43 this.employee = employee; 44 this.index = index; 45 } 46 }