LeetCode 673. Number of Longest Increasing Subsequence

原题链接在这里:https://leetcode.com/problems/number-of-longest-increasing-subsequence/description/

题目:

Given an unsorted array of integers, find the number of longest increasing subsequence.

Example 1:

Input: [1,3,5,4,7]
Output: 2
Explanation: The two longest increasing subsequence are [1, 3, 4, 7] and [1, 3, 5, 7].

Example 2:

Input: [2,2,2,2,2]
Output: 5
Explanation: The length of longest continuous increasing subsequence is 1, and there are 5 subsequences' length is 1, so output 5.

Note: Length of the given array will be not exceed 2000 and the answer is guaranteed to be fit in 32-bit signed int.

题解:

len[i] reqpresents到i的LIS长度. count[i] represents 到i的LIS个数.

Base Case 都是1.

For all j from 0 to i, if nums[j] < nums[i], there is a chance to update longest length ending at i.

If there is an update, then update len[i] with len[j]+1 and frequency = count[j].

If there is no update, but len[j]+1 == len[i] means there is other paths to construct LIS ending at i, thus accumlate frequency.

After iterating all j, if longest LIS got update, then update max length, and its frequency.

If max length stays the same, that means globally there is other LIS with the same length, accumate frequency. 

Note: res is initialized as 0. e.g. nums = [2, 2, 2, 2, 2]. res is incremented by 1 five times totally. Thus res should be initialized as 0.

Time Complexity: O(n^2), n = nums.length.

Space: O(n).

AC Java: 

复制代码
 1 class Solution {
 2     public int findNumberOfLIS(int[] nums) {
 3         if(nums == null || nums.length == 0){
 4             return 0;
 5         }
 6         
 7         int n = nums.length;
 8         // Longest length ending at i
 9         int [] len = new int[n];
10         
11         // Frequency of longest length ending at i
12         int [] count = new int[n];
13         int max = 1;
14         int res = 0;
15         
16         for(int i = 0; i<n; i++){
17             len[i] = 1;
18             count[i] = 1;
19             for(int j = 0; j<i; j++){
20                 if(nums[j] < nums[i]){
21                     if(len[j]+1 == len[i]){
22                         // Same longest length ending at i, accumlate frequency
23                         count[i] += count[j];
24                     }else if(len[j]+1 > len[i]){
25                         // There is longer subsequence ending at i, update its longest length and frequency
26                         len[i] = len[j]+1;
27                         count[i] = count[j];
28                     }
29                 }
30             }
31             
32             if(len[i] > max){
33                 // Globally, this one is longer, update global maximum length and its requency
34                 max = len[i];
35                 res = count[i];
36             }else if(len[i] == max){
37                 // Globally, this one has the same maximum length, accumlate its frequency to res
38                 res += count[i];
39             }
40         }
41         
42         return res;
43     }
44 }
复制代码

Longest Increasing SubsequenceLongest Continuous Increasing Subsequence 的进阶题.

跟上Minimum Window Subsequence.

posted @   Dylan_Java_NYC  阅读(733)  评论(0编辑  收藏  举报
编辑推荐:
· SQL Server如何跟踪自动统计信息更新?
· AI与.NET技术实操系列:使用Catalyst进行自然语言处理
· 分享一个我遇到过的“量子力学”级别的BUG。
· Linux系列:如何调试 malloc 的底层源码
· AI与.NET技术实操系列:基于图像分类模型对图像进行分类
阅读排行:
· 几个技巧,教你去除文章的 AI 味!
· 系统高可用的 10 条军规
· 对象命名为何需要避免'-er'和'-or'后缀
· 关于普通程序员该如何参与AI学习的三个建议以及自己的实践
· AI与.NET技术实操系列(八):使用Catalyst进行自然语言处理
点击右上角即可分享
微信分享提示