LeetCode 310. Minimum Height Trees
原题链接在这里:https://leetcode.com/problems/minimum-height-trees/
题目:
For a undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.
Format
The graph contains n
nodes which are labeled from 0
to n - 1
. You will be given the number n
and a list of undirected edges
(each edge is a pair of labels).
You can assume that no duplicate edges will appear in edges
. Since all edges are undirected, [0, 1]
is the same as [1, 0]
and thus will not appear together in edges
.
Example 1:
Given n = 4
, edges = [[1, 0], [1, 2], [1, 3]]
0 | 1 / \ 2 3
return [1]
Example 2:
Given n = 6
, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]
0 1 2 \ | / 3 | 4 | 5
return [3, 4]
题解:
与Course Schedule, Course Schedule II类似。
用BFS based topological sort. 从叶子节点开始放入queue中,最后剩下的一个或者两个就是最中心的点.
这里练习undirected graph的topological sort. 用Map<Integer, Set<Integer>>来表示graph, 一条edge, 两头node都需要加graph中.
Time Complexity: O(n+e). Space: O(n+e).
AC Java:
1 class Solution { 2 public List<Integer> findMinHeightTrees(int n, int[][] edges) { 3 List<Integer> res = new ArrayList<>(); 4 if(n == 1){ 5 return Arrays.asList(0); 6 } 7 8 if(n < 1 || edges == null || edges.length != n - 1){ 9 return res; 10 } 11 12 List<HashSet<Integer>> graph = new ArrayList<>(); 13 for(int i = 0; i < n; i++){ 14 graph.add(new HashSet<>()); 15 } 16 17 for(int[] e : edges){ 18 graph.get(e[0]).add(e[1]); 19 graph.get(e[1]).add(e[0]); 20 } 21 22 LinkedList<Integer> que = new LinkedList<>(); 23 for(int i = 0; i < n; i++){ 24 if(graph.get(i).size() == 1){ 25 que.add(i); 26 } 27 } 28 29 while(n > 2){ 30 n -= que.size(); 31 LinkedList<Integer> temp = new LinkedList<>(); 32 while(!que.isEmpty()){ 33 int cur = que.poll(); 34 for(int nei : graph.get(cur)){ 35 graph.get(cur).remove(nei); 36 graph.get(nei).remove(cur); 37 if(graph.get(nei).size() == 1){ 38 temp.add(nei); 39 } 40 } 41 } 42 43 que = temp; 44 } 45 46 return que; 47 } 48 }