LeetCode 230. Kth Smallest Element in a BST
原题链接在这里:https://leetcode.com/problems/kth-smallest-element-in-a-bst/description/
题目:
Given a binary search tree, write a function kthSmallest
to find the kth smallest element in it.
Note:
You may assume k is always valid, 1 ≤ k ≤ BST's total elements.
Follow up:
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
Hint:
- Try to utilize the property of a BST.
- What if you could modify the BST node's structure?
- The optimal runtime complexity is O(height of BST).
题解:
Method 1: BST 用Binary Tree Inorder Traversal出来的就是由小到大,Method1用recursion,会出来一整个list, 然后返回list.get(k-1)即可.
Time Complexity: O(n). Space: O(n).
AC Java:
1 /** 2 * Definition for a binary tree node. 3 * public class TreeNode { 4 * int val; 5 * TreeNode left; 6 * TreeNode right; 7 * TreeNode(int x) { val = x; } 8 * } 9 */ 10 public class Solution { 11 public int kthSmallest(TreeNode root, int k) { 12 List<Integer> ls = new ArrayList<Integer>(); 13 inorder(root,ls); 14 return ls.get(k-1); 15 } 16 private void inorder(TreeNode root, List<Integer> ls){ 17 if(root == null){ 18 return; 19 } 20 inorder(root.left,ls); 21 ls.add(root.val); 22 inorder(root.right,ls); 23 } 24 }
Method 2: 改recursion为iteration, 如此可以不用走完全树.
Time Complexity: O(n). Space: O(logn).
1 /** 2 * Definition for a binary tree node. 3 * public class TreeNode { 4 * int val; 5 * TreeNode left; 6 * TreeNode right; 7 * TreeNode(int x) { val = x; } 8 * } 9 */ 10 public class Solution { 11 public int kthSmallest(TreeNode root, int k) { 12 Stack<TreeNode> stk = new Stack<TreeNode>(); 13 while(root!=null || !stk.empty()){ 14 if(root != null){ 15 stk.push(root); 16 root = root.left; 17 }else{ 18 TreeNode tn = stk.pop(); 19 k--; 20 if(k == 0){ 21 return tn.val; 22 } 23 root = tn.right; 24 } 25 } 26 return -1; 27 } 28 }
Method 3: 根据BST性质,看root左子树有多少点,如果正好等于k-1, 则返回root.val, 如果小于k-1, 就在root右子树中找第k-leftSum-1小的点值, 若果大于k-1, 就在左子树中找第k小的点值。
Note: 是返回root.val 不是root.
Time Complexity: O(n). Space: O(logn).
AC Java:
1 /** 2 * Definition for a binary tree node. 3 * public class TreeNode { 4 * int val; 5 * TreeNode left; 6 * TreeNode right; 7 * TreeNode(int x) { val = x; } 8 * } 9 */ 10 public class Solution { 11 public int kthSmallest(TreeNode root, int k) { 12 int leftSum = nodeSum(root.left); 13 if(leftSum == k-1){ 14 return root.val; 15 }else if(leftSum < k-1){ 16 return kthSmallest(root.right,k-leftSum-1); 17 }else{ 18 return kthSmallest(root.left,k); 19 } 20 } 21 private int nodeSum(TreeNode root){ 22 if(root == null){ 23 return 0; 24 } 25 return nodeSum(root.left)+nodeSum(root.right)+1; 26 } 27 }