LeetCode 64. Minimum Path Sum

原题链接在这里:https://leetcode.com/problems/minimum-path-sum/

题目:

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

题解:

Unique Paths相似。存储历史信息是走到走到历史点的最小权重路径,更新当前点用上面点和左面点中的小值加上grid中当前点的值。

也相同的第二种降维方法.

Time Complexity: O(m*n). Space: O(n). 一维dp优化.

AC Java:

 1 public class Solution {
 2     public int minPathSum(int[][] grid) {
 3         /*
 4         //Method 1
 5         if(grid == null || grid.length == 0 || grid[0].length == 0){
 6             return 0;
 7         }
 8         int m = grid.length;
 9         int n = grid[0].length;
10         int [][] dp = new int[m][n];
11         dp[0][0] = grid[0][0];
12         for(int i = 1; i<m; i++){
13             dp[i][0] = dp[i-1][0] + grid[i][0];
14         }
15         for(int j = 1; j<n; j++){
16             dp[0][j] = dp[0][j-1] + grid[0][j];
17         }
18         for(int i = 1; i<m; i++){
19             for(int j = 1; j<n; j++){
20                 dp[i][j] = Math.min(dp[i-1][j],dp[i][j-1]) + grid[i][j];
21             }
22         }
23         return dp[m-1][n-1];
24         */
25         
26         //Method 2
27         if(grid == null || grid.length == 0 || grid[0].length == 0){
28             return 0;
29         }
30         int m = grid.length;
31         int n = grid[0].length;
32         int [] dp = new int[n];
33         dp[0] = grid[0][0];
34         for(int j = 1; j<n; j++){
35             dp[j] = dp[j-1] + grid[0][j];
36         }
37         for(int i = 1; i<m; i++){
38             for(int j = 0; j<n; j++){
39                 if(j == 0){
40                     dp[j] += grid[i][j];
41                 }else{
42                     dp[j] = Math.min(dp[j],dp[j-1]) + grid[i][j];
43                 }
44                 
45             }
46         }
47         return dp[n-1];
48     }
49 }

 

posted @ 2015-09-15 06:55  Dylan_Java_NYC  阅读(223)  评论(0编辑  收藏  举报