LeetCode 973. K Closest Points to Origin

原题链接在这里:https://leetcode.com/problems/k-closest-points-to-origin/

题目:

We have a list of points on the plane.  Find the K closest points to the origin (0, 0).

(Here, the distance between two points on a plane is the Euclidean distance.)

You may return the answer in any order.  The answer is guaranteed to be unique (except for the order that it is in.)

Example 1:

Input: points = [[1,3],[-2,2]], K = 1
Output: [[-2,2]]
Explanation: 
The distance between (1, 3) and the origin is sqrt(10).
The distance between (-2, 2) and the origin is sqrt(8).
Since sqrt(8) < sqrt(10), (-2, 2) is closer to the origin.
We only want the closest K = 1 points from the origin, so the answer is just [[-2,2]].

Example 2:

Input: points = [[3,3],[5,-1],[-2,4]], K = 2
Output: [[3,3],[-2,4]]
(The answer [[-2,4],[3,3]] would also be accepted.)

Note:

  1. 1 <= K <= points.length <= 10000
  2. -10000 < points[i][0] < 10000
  3. -10000 < points[i][1] < 10000

题解:

Could use maxHeap to track maximum distance, keep adding, when size > K, poll.

Time Complexity: O(nlogK). n = points.length.

Space: O(K).

AC Java:

 1 class Solution {
 2     public int[][] kClosest(int[][] points, int k) {
 3         if(points == null || points.length <= k){
 4             return points;
 5         }
 6         
 7         if(k <= 0){
 8             return new int[0][2];
 9         }
10         
11         PriorityQueue<int []> maxHeap = new PriorityQueue<>((a, b) -> b[0] * b[0] + b[1] * b[1] - a[0] * a[0] - a[1] * a[1]);
12         for(int [] p : points){
13             maxHeap.add(p);
14             if(maxHeap.size() > k){
15                 maxHeap.poll();
16             }
17         }
18         
19         return maxHeap.toArray(new int[maxHeap.size()][2]);
20     }
21 }

AC C++:

 1 class Solution {
 2 public:
 3     vector<vector<int>> kClosest(vector<vector<int>>& points, int k) {
 4         priority_queue<vector<int>> maxHeap;
 5         for(auto& p : points){
 6             int x = p[0];
 7             int y = p[1];
 8             maxHeap.push({x * x + y * y, x, y});
 9             if(maxHeap.size() > k){
10                 maxHeap.pop();
11             }
12         }
13 
14         vector<vector<int>> res(k);
15         for(int i = 0; i < k; i++){
16             vector<int> top = maxHeap.top();
17             maxHeap.pop();
18             res[i] = {top[1], top[2]};
19         }
20 
21         return res;
22     }
23 };

AC Python:

1 class Solution:
2     def kClosest(self, points: List[List[int]], k: int) -> List[List[int]]:
3         maxHeap = []
4         for x, y in points:
5             heappush(maxHeap, [-x * x - y * y, x, y])
6             if len(maxHeap) > k:
7                 heappop(maxHeap)
8         
9         return [[x, y] for _, x, y in maxHeap]

类似Top K Frequent Elements.

posted @ 2020-01-20 06:30  Dylan_Java_NYC  阅读(283)  评论(0编辑  收藏  举报