LeetCode 973. K Closest Points to Origin
原题链接在这里:https://leetcode.com/problems/k-closest-points-to-origin/
题目:
We have a list of points
on the plane. Find the K
closest points to the origin (0, 0)
.
(Here, the distance between two points on a plane is the Euclidean distance.)
You may return the answer in any order. The answer is guaranteed to be unique (except for the order that it is in.)
Example 1:
Input: points = [[1,3],[-2,2]], K = 1
Output: [[-2,2]]
Explanation:
The distance between (1, 3) and the origin is sqrt(10).
The distance between (-2, 2) and the origin is sqrt(8).
Since sqrt(8) < sqrt(10), (-2, 2) is closer to the origin.
We only want the closest K = 1 points from the origin, so the answer is just [[-2,2]].
Example 2:
Input: points = [[3,3],[5,-1],[-2,4]], K = 2
Output: [[3,3],[-2,4]]
(The answer [[-2,4],[3,3]] would also be accepted.)
Note:
1 <= K <= points.length <= 10000
-10000 < points[i][0] < 10000
-10000 < points[i][1] < 10000
题解:
Could use maxHeap to track maximum distance, keep adding, when size > K, poll.
Time Complexity: O(nlogK). n = points.length.
Space: O(K).
AC Java:
1 class Solution { 2 public int[][] kClosest(int[][] points, int k) { 3 if(points == null || points.length <= k){ 4 return points; 5 } 6 7 if(k <= 0){ 8 return new int[0][2]; 9 } 10 11 PriorityQueue<int []> maxHeap = new PriorityQueue<>((a, b) -> b[0] * b[0] + b[1] * b[1] - a[0] * a[0] - a[1] * a[1]); 12 for(int [] p : points){ 13 maxHeap.add(p); 14 if(maxHeap.size() > k){ 15 maxHeap.poll(); 16 } 17 } 18 19 return maxHeap.toArray(new int[maxHeap.size()][2]); 20 } 21 }
AC C++:
1 class Solution { 2 public: 3 vector<vector<int>> kClosest(vector<vector<int>>& points, int k) { 4 priority_queue<vector<int>> maxHeap; 5 for(auto& p : points){ 6 int x = p[0]; 7 int y = p[1]; 8 maxHeap.push({x * x + y * y, x, y}); 9 if(maxHeap.size() > k){ 10 maxHeap.pop(); 11 } 12 } 13 14 vector<vector<int>> res(k); 15 for(int i = 0; i < k; i++){ 16 vector<int> top = maxHeap.top(); 17 maxHeap.pop(); 18 res[i] = {top[1], top[2]}; 19 } 20 21 return res; 22 } 23 };
AC Python:
1 class Solution: 2 def kClosest(self, points: List[List[int]], k: int) -> List[List[int]]: 3 maxHeap = [] 4 for x, y in points: 5 heappush(maxHeap, [-x * x - y * y, x, y]) 6 if len(maxHeap) > k: 7 heappop(maxHeap) 8 9 return [[x, y] for _, x, y in maxHeap]