LeetCode 935. Knight Dialer

原题链接在这里:https://leetcode.com/problems/knight-dialer/

题目:

A chess knight can move as indicated in the chess diagram below:

 .           

 

This time, we place our chess knight on any numbered key of a phone pad (indicated above), and the knight makes N-1 hops.  Each hop must be from one key to another numbered key.

Each time it lands on a key (including the initial placement of the knight), it presses the number of that key, pressing N digits total.

How many distinct numbers can you dial in this manner?

Since the answer may be large, output the answer modulo 10^9 + 7.

Example 1:

Input: 1
Output: 10

Example 2:

Input: 2
Output: 20

Example 3:

Input: 3
Output: 46

Note:

  • 1 <= N <= 5000

题解:

The question asks distinct numbers could dial.

It is actually the sum of ways jump ending at each cell.

Cell 1 could jump to cell 6 and 8. Thus accumlate the current ways count to next ways at 6 and 8.

Eventually, get all the sum.

Time Complexity: O(N).

Space: O(1).

AC Java: 

 1 class Solution {
 2     public int knightDialer(int N) {
 3         if(N == 0){
 4             return 0;
 5         }
 6         
 7         if(N == 1){
 8             return 10;
 9         }
10         
11         int M = 1000000007;
12         long [] cur = new long[10];
13         Arrays.fill(cur, 1);
14         for(int k = 2; k<=N; k++){
15             long [] next = new long[10];
16 
17             next[1] = (cur[6]+cur[8])%M;
18             next[2] = (cur[7]+cur[9])%M;
19             next[3] = (cur[4]+cur[8])%M;
20             next[4] = (cur[3]+cur[9]+cur[0])%M;
21             next[5] = 0;
22             next[6] = (cur[1]+cur[7]+cur[0])%M;
23             next[7] = (cur[2]+cur[6])%M;
24             next[8] = (cur[1]+cur[3])%M;
25             next[9] = (cur[2]+cur[4])%M;
26             next[0] = (cur[4]+cur[6])%M;
27             
28             cur = next;
29         }
30         
31         long res = 0;
32         for(int i = 0; i<10; i++){
33             res = (res + cur[i]) % M;
34         }
35         return (int)res;
36     }
37 }

类似Number of Ways to Stay in the Same Place After Some Steps.

posted @ 2019-09-07 14:07  Dylan_Java_NYC  阅读(501)  评论(0编辑  收藏  举报