树链剖分(转载)

转自:https://www.cnblogs.com/ivanovcraft/p/9019090.html

推荐blog:https://www.cnblogs.com/ivanovcraft/p/9019090.html

     https://www.cnblogs.com/Khada-Jhin/p/9576403.html

 

转载请注明出处,部分内容引自banananana大神的博客



别说你不知道什么是树╮(─▽─)╭(帮你百度一下

前置知识:  dfs序  LCA  线段树



先来回顾两个问题:
1,将树从x到y结点最短路径上所有节点的值都加上z

这也是个模板题了吧

我们很容易想到,树上差分可以以O(n+m)的优秀复杂度解决这个问题

2,求树从x到y结点最短路径上所有节点的值之和

lca大水题,我们又很容易地想到,dfs O(n)预处理每个节点的dis(即到根节点的最短路径长度)

然后对于每个询问,求出x,y两点的lca,利用lca的性质distance ( x , y ) = dis ( x ) + dis ( y ) - 2 * dis ( lca )求出结果

时间复杂度O(mlogn+n)

现在来思考一个bug:
如果刚才的两个问题结合起来,成为一道题的两种操作呢?

刚才的方法显然就不够优秀了(每次询问之前要跑dfs更新dis)



树链剖分华丽登场
树剖是通过轻重边剖分将树分割成多条链,然后利用数据结构来维护这些链(本质上是一种优化暴力)

 

首先明确概念:

重儿子:父亲节点的所有儿子中子树结点数目最多(size最大)的结点;

轻儿子:父亲节点中除了重儿子以外的儿子;

重边:父亲结点和重儿子连成的边;

轻边:父亲节点和轻儿子连成的边;

重链:由多条重边连接而成的路径;

轻链:由多条轻边连接而成的路径;

 

比如上面这幅图中,用黑线连接的结点都是重结点,其余均是轻结点,

2-11就是重链,2-5就是轻链,用红点标记的就是该结点所在重链的起点,也就是下文提到的top结点,

还有每条边的值其实是进行dfs时的执行序号。


变量声明:

复制代码
const int maxn=1e5+10;
struct edge{
    int next,to;
}e[2*maxn];
struct Node{
    int sum,lazy,l,r,ls,rs;
}node[2*maxn];
int rt,n,m,r,a[maxn],cnt,head[maxn],f[maxn],d[maxn],size[maxn],son[maxn],rk[maxn],top[maxn],id[maxn];
复制代码
名称 解释
f[u] 保存结点u的父亲节点
d[u] 保存结点u的深度值
size[u] 保存以u为根的子树节点个数
son[u] 保存重儿子
rk[u] 保存当前dfs标号在树中所对应的节点
top[u] 保存当前节点所在链的顶端节点
id[u] 保存树中每个节点剖分以后的新编号(DFS的执行顺序)

 


我们要做的就是(树链剖分的实现):


1,对于一个点我们首先求出它所在的子树大小,找到它的重儿子(即处理出size,son数组),
解释:比如说点1,它有三个儿子2,3,4

2所在子树的大小是5

3所在子树的大小是2

4所在子树的大小是6

那么1的重儿子是4

ps:如果一个点的多个儿子所在子树大小相等且最大

那随便找一个当做它的重儿子就好了

叶节点没有重儿子,非叶节点有且只有一个重儿子


2,在dfs过程中顺便记录其父亲以及深度(即处理出f,d数组),操作1,2可以通过一遍dfs完成

复制代码
void dfs1(int u,int fa,int depth)    //当前节点、父节点、层次深度
{
    f[u]=fa;
    d[u]=depth;
    size[u]=1;    //这个点本身size=1
    for(int i=head[u];i;i=e[i].next)
    {
        int v=e[i].to;
        if(v==fa)
            continue;
        dfs1(v,u,depth+1);    //层次深度+1
        size[u]+=size[v];    //子节点的size已被处理,用它来更新父节点的size
        if(size[v]>size[son[u]])
            son[u]=v;    //选取size最大的作为重儿子
    }
}
//进入
dfs1(root,0,1);
复制代码

dfs跑完大概是这样的,大家可以手动模拟一下


3,第二遍dfs,然后连接重链,同时标记每一个节点的dfs序,并且为了用数据结构来维护重链,我们在dfs时保证一条重链上各个节点dfs序连续(即处理出数组top,id,rk)

复制代码
void dfs2(int u,int t)    //当前节点、重链顶端
{
    top[u]=t;
    id[u]=++cnt;    //标记dfs序
    rk[cnt]=u;    //序号cnt对应节点u
    if(!son[u])
        return;
    dfs2(son[u],t);
/*我们选择优先进入重儿子来保证一条重链上各个节点dfs序连续,
一个点和它的重儿子处于同一条重链,所以重儿子所在重链的顶端还是t*/
    for(int i=head[u];i;i=e[i].next)
    {
        int v=e[i].to;
        if(v!=son[u]&&v!=f[u])
            dfs2(v,v);    //一个点位于轻链底端,那么它的top必然是它本身
    }
}
复制代码

dfs跑完大概是这样的,大家可以手动模拟一下


4,两遍dfs就是树链剖分的主要处理,通过dfs我们已经保证一条重链上各个节点dfs序连续,那么可以想到,我们可以通过数据结构(以线段树为例)来维护一条重链的信息
回顾上文的那个题目,修改和查询操作原理是类似的,以查询操作为例,其实就是个LCA,不过这里使用了top来进行加速,因为top可以直接跳转到该重链的起始结点,轻链没有起始结点之说,他们的top就是自己。需要注意的是,每次循环只能跳一次,并且让结点深的那个来跳到top的位置,避免两个一起跳从而插肩而过。

复制代码
int sum(int x,int y)
{
    int ans=0,fx=top[x],fy=top[y];
    while(fx!=fy)    //两点不在同一条重链
    {
        if(d[fx]>=d[fy])
        {
            ans+=query(id[fx],id[x],rt);    //线段树区间求和,处理这条重链的贡献
            x=f[fx],fx=top[x];    //将x设置成原链头的父亲结点,走轻边,继续循环
        }
        else
        {
            ans+=query(id[fy],id[y],rt);
            y=f[fy],fy=top[y];
        }
    }
    //循环结束,两点位于同一重链上,但两点不一定为同一点,所以我们还要统计这两点之间的贡献
    if(id[x]<=id[y])
        ans+=query(id[x],id[y],rt);
    else
        ans+=query(id[y],id[x],rt);
    return ans;
}
复制代码

大家如果明白了树链剖分,也应该有举一反三的能力(反正我没有),修改和LCA就留给大家自己完成了


5,树链剖分的时间复杂度
树链剖分的两个性质:

1,如果(u, v)是一条轻边,那么size(v) < size(u)/2;

2,从根结点到任意结点的路所经过的轻重链的个数必定都小于logn;

可以证明,树链剖分的时间复杂度为O(nlog^2n)


几道例题:
1,树链剖分模板
就是刚才讲的
上代码:

#include<iostream>
#include<cstdio>
using namespace std;
const int maxn=1e5+10;
struct edge{
    int next,to;
}e[2*maxn];
struct Node{
    int sum,lazy,l,r,ls,rs;
}node[2*maxn];
int rt,n,m,r,a[maxn],cnt,head[maxn],f[maxn],d[maxn],size[maxn],son[maxn],rk[maxn],top[maxn],tid[maxn];
void add_edge(int x,int y)
{
    e[++cnt].next=head[x];
    e[cnt].to=y;
    head[x]=cnt;
}
void dfs1(int u,int fa,int depth)
{
    f[u]=fa;
    d[u]=depth;
    size[u]=1;
    for(int i=head[u];i;i=e[i].next)
    {
        int v=e[i].to;
        if(v==fa)
            continue;
        dfs1(v,u,depth+1);
        size[u]+=size[v];
        if(size[v]>size[son[u]])
            son[u]=v;
    }
}
void dfs2(int u,int t)
{
    top[u]=t;
    tid[u]=++cnt;
    rk[cnt]=u;
    if(!son[u])
        return;
    dfs2(son[u],t);
    for(int i=head[u];i;i=e[i].next)
    {
        int v=e[i].to;
        if(v!=son[u]&&v!=f[u])
            dfs2(v,v);
    }
}
void pushup(int x)
{
    node[x].sum=(node[node[x].ls].sum+node[node[x].rs].sum+node[x].lazy*(node[x].r-node[x].l+1));
}
void build(int li,int ri,int cur)
{
    if(li==ri)
    {
        node[cur].ls=node[cur].rs=-1;
        node[cur].l=node[cur].r=li;
        node[cur].sum=a[rk[li]];
        return;
    }
    int mid=(li+ri)>>1;
    node[cur].ls=cnt++;
    node[cur].rs=cnt++;
    build(li,mid,node[cur].ls);
    build(mid+1,ri,node[cur].rs);
    node[cur].l=node[node[cur].ls].l;
    node[cur].r=node[node[cur].rs].r;
    pushup(cur);
}
void update(int li,int ri,int c,int cur)
{
    if(li<=node[cur].l&&node[cur].r<=ri)
    {
        node[cur].sum+=c*(node[cur].r-node[cur].l+1);
        node[cur].lazy+=c;
        return;
    }
    int mid=(node[cur].l+node[cur].r)>>1;
    if(li<=mid)
        update(li,ri,c,node[cur].ls);
    if(mid<ri)
        update(li,ri,c,node[cur].rs);
    pushup(cur);
}
int query(int li,int ri,int cur)
{
    if(li<=node[cur].l&&node[cur].r<=ri)
        return node[cur].sum;
    int tot=node[cur].lazy*(min(node[cur].r,ri)-max(node[cur].l,li)+1);
    int mid=(node[cur].l+node[cur].r)>>1;
    if(li<=mid)
        tot+=query(li,ri,node[cur].ls);
    if(mid<ri)
        tot+=query(li,ri,node[cur].rs);
    return tot;
}
int sum(int x,int y)
{
    int ans=0,fx=top[x],fy=top[y];
    while(fx!=fy)
    {
        if(d[fx]>=d[fy])
        {
            ans+=query(tid[fx],tid[x],rt);
            x=f[fx];
        }
        else
        {
            ans+=query(tid[fy],tid[y],rt);
            y=f[fy];
        }
        fx=top[x];
        fy=top[y];
    }
    if(tid[x]<=tid[y])
        ans+=query(tid[x],tid[y],rt);
    else
        ans+=query(tid[y],tid[x],rt);
    return ans;
}
void updates(int x,int y,int c)
{
    int fx=top[x],fy=top[y];
    while(fx!=fy)
    {
        if(d[fx]>=d[fy])
        {
            update(tid[fx],tid[x],c,rt);
            x=f[fx];
        }
        else
        {
            update(tid[fy],tid[y],c,rt);
            y=f[fy];
        }
        fx=top[x];
        fy=top[y];
    }
    if(tid[x]<=tid[y])
        update(tid[x],tid[y],c,rt);
    else
        update(tid[y],tid[x],c,rt);
}
int main()
{
    cin>>n>>m>>r;
    for(int i=1;i<=n;i++)
        cin>>a[i];
    for(int i=1;i<n;i++)
    {
        int x,y;
        cin>>x>>y;
        add_edge(x,y);
        add_edge(y,x);
    }
    cnt=0;
    dfs1(r,0,1);
    dfs2(r,r);
    cnt=0;
    rt=cnt++;
    build(1,n,rt);
    for(int i=1;i<=m;i++)
    {
        int op,x,y,z;
        cin>>op;
        if(op==1)
        {
            cin>>x>>y>>z;
            updates(x,y,z);
        }
        else if(op==2)
        {
            cin>>x>>y;
            cout<<sum(x,y)<<endl;
        }
        else if(op==3)
        {
            cin>>x>>z;
                        //子树也有连续区间的性质
            update(tid[x],tid[x]+size[x]-1,z,rt);
        }
        else if(op==4)
        {
            cin>>x;
            cout<<query(tid[x],tid[x]+size[x]-1,rt)<<endl;
        }
    }
    return 0;
}        
View Code

 

2,[NOI2015]软件包管理器
观察到题目要求支持两种操作

1,install x:表示安装软件包x

2,uninstall x:表示卸载软件包x

对于操作一,我们可以统计x到根节点未安装的软件包的个数,然后区间修改为已安装

对于操作二,我们可以统计x所在子树已安装软件包的个数,然后将子树修改为未安装
上代码:

#include<iostream>
#include<cstdio>
#define int long long
using namespace std;
const int maxn=1e5+10;
struct edge{
    int next,to;
}e[2*maxn];
struct Node{
    int l,r,ls,rs,sum,lazy;
}node[2*maxn];
int rt,n,m,cnt,head[maxn];
int f[maxn],d[maxn],size[maxn],son[maxn],rk[maxn],top[maxn],tid[maxn];
int readn()
{
    int x=0;
    char ch=getchar();
    while(ch<'0'||ch>'9')
        ch=getchar();
    while(ch>='0'&&ch<='9')
    {
        x=(x<<1)+(x<<3)+ch-'0';
        ch=getchar();
    }
    return x;
}
void add_edge(int x,int y)
{
    e[++cnt].next=head[x];
    e[cnt].to=y;
    head[x]=cnt;
}
void dfs1(int u,int fa,int depth)
{
    f[u]=fa;
    d[u]=depth;
    size[u]=1;
    for(int i=head[u];i;i=e[i].next)
    {
        int v=e[i].to;
        if(v==fa)
            continue;
        dfs1(v,u,depth+1);
        size[u]+=size[v];
        if(size[v]>size[son[u]]||!son[u])
            son[u]=v;
    }
}
void dfs2(int u,int t)
{
    top[u]=t;
    tid[u]=++cnt;
    rk[cnt]=u;
    if(!son[u])
        return;
    dfs2(son[u],t);
    for(int i=head[u];i;i=e[i].next)
    {
        int v=e[i].to;
        if(v!=son[u]&&v!=f[u])
            dfs2(v,v);
    }
}
void pushup(int x)
{
    int lson=node[x].ls,rson=node[x].rs;
    node[x].sum=node[lson].sum+node[rson].sum;
    node[x].l=node[lson].l;
    node[x].r=node[rson].r;
}
void build(int li,int ri,int cur)
{
    if(li==ri)
    {
        node[cur].ls=node[cur].rs=node[cur].lazy=-1;
        node[cur].l=node[cur].r=li;
        return;
    }
    int mid=(li+ri)>>1;
    node[cur].ls=cnt++;
    node[cur].rs=cnt++;
    build(li,mid,node[cur].ls);
    build(mid+1,ri,node[cur].rs);
    pushup(cur);
}
void pushdown(int x)
{
    int lson=node[x].ls,rson=node[x].rs;
    node[lson].sum=node[x].lazy*(node[lson].r-node[lson].l+1);
    node[rson].sum=node[x].lazy*(node[rson].r-node[rson].l+1);
    node[lson].lazy=node[x].lazy;
    node[rson].lazy=node[x].lazy;
    node[x].lazy=-1;
}
void update(int li,int ri,int c,int cur)
{
    if(li<=node[cur].l&&node[cur].r<=ri)
    {
        node[cur].sum=c*(node[cur].r-node[cur].l+1);
        node[cur].lazy=c;
        return;
    }
    if(node[cur].lazy!=-1)
        pushdown(cur);
    int mid=(node[cur].l+node[cur].r)>>1;
    if(li<=mid)
        update(li,ri,c,node[cur].ls);
    if(mid<ri)
        update(li,ri,c,node[cur].rs);
    pushup(cur);
}
int query(int li,int ri,int cur)
{
    if(li<=node[cur].l&&node[cur].r<=ri)
        return node[cur].sum;
    if(node[cur].lazy!=-1)
        pushdown(cur);
    int tot=0;
    int mid=(node[cur].l+node[cur].r)>>1;
    if(li<=mid)
        tot+=query(li,ri,node[cur].ls);
    if(mid<ri)
        tot+=query(li,ri,node[cur].rs);
    return tot;
}
int sum(int x)
{
    int ans=0;
    int fx=top[x];
    while(fx)
    {
        ans+=tid[x]-tid[fx]-query(tid[fx],tid[x],rt)+1;
        update(tid[fx],tid[x],1,rt);
        x=f[fx];
        fx=top[x];
    }
    ans+=tid[x]-tid[0]-query(tid[0],tid[x],rt)+1;
    update(tid[0],tid[x],1,rt);
    return ans;
}
signed main()
{
    n=readn();
    for(int i=1;i<n;i++)
    {
        int x=readn();
        add_edge(x,i);
        add_edge(i,x);
    }
    cnt=0;
    dfs1(0,-1,1);
    dfs2(0,0);
    cnt=0;
    rt=cnt++;
    build(1,n,rt);
    m=readn();
    for(int i=1;i<=m;i++)
    {
        int x;
        string op;
        cin>>op;
        x=readn();
        if(op=="install")
            printf("%lld\n",sum(x));
        else if(op=="uninstall")
        {
            printf("%lld\n",query(tid[x],tid[x]+size[x]-1,rt));
            update(tid[x],tid[x]+size[x]-1,0,rt);
        }
    }
    return 0;
}
View Code

 

3,[SDOI2011]染色
有一些思维含量的题

统计颜色段数量时不能简单地区间加法

线段树还应维护区间最左颜色和区间最右颜色

合并时

如果S(l,k)的右端与S(k+1,r)的左端颜色相同,那么S(l,r)=S(l,k)+S(k+1,r)-1(减去重复的那一个)

否则S(l,r)=S(l,k)+S(k+1,r)正常合并

posted @ 2018-10-29 21:20  月下的魔术师0310  阅读(113)  评论(0编辑  收藏  举报