Codeforces 919E Congruence Equation(循环节+数论)
题意
给$n, m, p, x$,求有多少个$n(1\leq n \leq x)$使得$n·a^{n}=b(\textrm{mod}\;p)$成立
思路
考虑一下左边的循环节长度,由于$n%p$的循环节长度为$p$,$a^{n}%p$的循环节长度为$p-1$(根据费马小定理$a^{0}=a^{p-1}=1(\textrm{mod}\;p)$),所以(大胆猜测)左边的循环节长度就是$p*(p-1)$。接下来,设$n=k*(p-1)+i$,有原式:
$n·a^{n}=b(\textrm{mod}\;p)$
$n=b*a^{-n}(\textrm{mod}\;p)$
$k*(p-1)+i=b*a^{-k*(p-1)-i}(\textrm{mod}\;p)$
$-k+i=b*a^{-i}(\textrm{mod}\;p)$
$k=i-b*a^{-i}(\textrm{mod}\;p)$
由于$a^{i}(\textrm{mod}\;p)$的值至多$p-1$个,所以枚举$i$即可算出$k$,即可算出$n=k*(p-1)+i$此为当前$i$下$n$的最小值,然后算一下加了循环节长度之后有多少满足的$n$即可。
Code
#include <bits/stdc++.h> #define DBG(x) cerr << #x << " = " << x << endl using namespace std; typedef long long ll; const int N = 1e6 + 5; ll a, b, p, x, ans, pw[N]; ll fpow(ll a, ll b, ll mod) { ll res = 1; a %= mod; for(; b; b >>= 1, a = a * a % mod) if(b & 1) res = res * a % mod; return res; } int main() { scanf("%lld%lld%lld%lld", &a, &b, &p, &x); ll G = p * (p - 1); for(int i = 1; i <= p - 1; i++) { pw[i] = i == 1 ? a : pw[i - 1] * a % p; ll k = ((i - b * fpow(pw[i], p - 2, p) % p) % p + p) % p; if(x >= k * (p - 1) + i) ans += (x - k * (p - 1) - i) / G + 1; } printf("%lld\n", ans); }