ZOJ Monthly, March 2018 Solution

A - Easy Number Game

水。

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 
 4 #define ll long long
 5 #define N 100010
 6 ll arr[N];
 7 int n, m;
 8 
 9 int main()
10 {
11     int t; scanf("%d", &t);
12     while (t--)
13     {
14         scanf("%d%d", &n, &m);
15         for (int i = 1; i <= n; ++i) scanf("%lld", arr + i);
16         sort(arr + 1, arr + 1 + n);
17         ll res = 0;
18         for (int i = 1; i <= m; ++i)
19             res += arr[i] * arr[2 * m - i + 1]; 
20         printf("%lld\n", res);
21     }
22     return 0;
23 }
View Code

 

B - Lucky Man

题意:判断大数开根后的奇偶性

思路:牛顿迭代法

 1 import java.io.BufferedInputStream;
 2 import java.util.Scanner;
 3 import java.math.*;
 4 
 5 public class Main {
 6 
 7     public static void main(String[] args) {
 8         Scanner in = new Scanner(new BufferedInputStream(System.in));
 9         int t = in.nextInt();
10         BigInteger a, x, two; String n;
11         two = BigInteger.valueOf(2);
12         while (t-- != 0)
13         {
14             n = in.next();
15             a = new BigInteger(n);
16             x = new BigInteger(n.substring(0, n.length() / 2 + 1));
17             while (a.compareTo(x.multiply(x)) < 0)
18                 x = x.add(a.divide(x)).divide(two);
19             if (x.mod(two).compareTo(BigInteger.ZERO) == 0) System.out.println(0);
20             else System.out.println(1);
21         }
22         in.close();
23     }
24 }
View Code

 

C - Travel along the Line

题意:一维坐标系中,刚开始位于原点,有$\frac{1}{4}$的概率 坐标 +1 和 -1  有$\frac {1}{2} 的概率 不动$  求在第n秒的时候恰好到达第m个位置的概率

思路:考虑把一个0拆成两个0,变成四种操作,这样四种操作是等概率的,那么所有的可能性就是 $4^n$ 再考虑符合条件的方案数

可以考虑将m通过坐标变换转化成正的,那么一个满足题意的操作序列肯定是 1 的个数 减去 -1的 个数 恰好为m

那么我们只需要枚举1的个数,排列组合一下即可

16说 假如用a 表示 1 的个数  b 表示 -1 的个数 c 表示 0的个数

那么有$\frac {n!} {a! \cdot b! \cdot c!}$ 但是这里要考虑 多乘上$2^c$ 因为每个0都有两种选择 ,可以是$0_1 或者 是 0_2$

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 
 4 #define ll long long
 5 #define N 100010
 6 ll MOD = (ll)1e9 +7;
 7 
 8 ll fac[N], Bit[N];
 9 ll qmod(ll base, ll n)
10 {
11     ll res = 1;
12     while (n)
13     {
14         if (n & 1) res = res * base % MOD;
15         base = base * base % MOD;
16         n >>= 1;
17     }
18     return res;
19 }
20 
21 void Init()
22 {
23     fac[0] = 1;
24     Bit[0] = 1;
25     for (int i = 1; i < N; ++i) fac[i] = fac[i - 1] * i % MOD;
26     for (int i = 1; i < N; ++i) Bit[i] = Bit[i - 1] * 2 % MOD;
27 }
28 
29 int n, m;
30 
31 int main()
32 {
33     Init();
34     int t; scanf("%d", &t);
35     while (t--)
36     {
37         scanf("%d%d", &n, &m);
38         if (m < 0) m = -m;
39         ll p = 0, q = qmod(4, n); 
40         for (int i = 0; 2 * i + m <= n; ++i)
41             p = (p + (fac[n] * qmod(fac[i], MOD - 2) %MOD * qmod(fac[i + m], MOD - 2) % MOD * qmod(fac[n - 2 * i - m], MOD - 2) % MOD * Bit[n - 2 * i - m] % MOD)) % MOD;    
42         ll res = p * qmod(q, MOD - 2) % MOD;
43         printf("%lld\n", res);
44     }
45     return 0;
46 }
View Code

 

D - Machine Learning on a Tree

留坑。

 

E - Yet Another Tree Query Problem

题意:每次询问$[l, r]$ 区间内所有点所在的连通块个数

思路:先预处理l 为 1    r 为 1 ->n  的答案  考虑删去一个点对后面答案的影响

将一个点的所有孩子和父亲中,按编号排序

比如说  点1  连出去的边有  4, 10, 20

那么 对于右界为 2-3 的  连通块个数少一

右界为5 - 9 的 连通块个数不变

右界为 11 - 19 的 连通块个数加1

BIT区间更新即可

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 
 4 #define N 200010
 5 #define pii pair <int, int>
 6 int t, n, q;
 7 vector <int> G[N];
 8 vector <pii> que[N];
 9 int base[N], ans[N];
10 
11 struct BIT
12 {
13     int a[N];
14     void init() { memset(a, 0, sizeof a); }
15     void update(int x, int val)    { for (; x <= n; x += x & -x) a[x] += val; }
16     void update(int l, int r, int val)
17     {
18         if (r < l) return;
19         update(l, val);
20         update(r + 1, -val);
21     }
22     int query(int x)
23     {
24         int res = 0;
25         for (; x; x -= x & -x)
26             res += a[x];
27         return res;
28     }
29 
30 }bit;
31 
32 void Run() 
33 {
34     scanf("%d", &t);
35     while (t--)
36     {
37         for (int i = 1; i <= n; ++i) G[i].clear(), que[i].clear();
38         bit.init(); 
39         scanf("%d%d", &n, &q);
40         for (int i = 1, u, v; i < n; ++i)
41         {
42             scanf("%d%d", &u, &v);
43             G[u].push_back(v);
44             G[v].push_back(u);
45         }
46         for (int i = 1, l, r; i <= q; ++i)
47         {
48             scanf("%d%d", &l, &r);
49             que[l].emplace_back(r, i);
50         }
51         for (int i = 1; i <= n; ++i)
52         {
53             int tmp = 1; 
54             sort(G[i].begin(), G[i].end());
55             for (auto v : G[i]) if (v < i)   
56                 --tmp;  
57             base[i] = base[i - 1] + tmp; 
58         }
59         for (int i = 1; i <= n; ++i)
60         {
61             for (auto it : que[i])  
62                 ans[it.second] = base[it.first] + bit.query(it.first); 
63             G[i].push_back(n + 1);  
64             int pre = i + 1;   
65             for (int j = 0, len = G[i].size(), add = -1; j < len; ++j) 
66             {
67                 int v = G[i][j];
68                 if (v < i) continue;
69                 bit.update(pre, v - 1, add); 
70                 pre = v; ++add;
71             }
72         }
73         for (int i = 1; i <= q; ++i) printf("%d\n", ans[i]);
74     }
75 }
76 
77 int main()
78 {
79     #ifdef LOCAL
80         freopen("Test.in", "r", stdin); 
81     #endif 
82 
83     Run();
84     return 0;
85 
86 }
View Code

 

F - And Another Data Structure Problem

题意:两种操作,一种是区间立方,一种是区间求和

思路:考虑这个模数很特殊

$3^{48} \equiv 1 \pmod {99970}$

所以有

$a^{3^{48}} \equiv a \pmod {99971}$

所有任意数做48次后 必然会回到原数 考虑开48棵线段树解决

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 
 4 #define N 100010
 5 #define ll long long
 6 const ll MOD = 99971;
 7 int t, n, q;
 8 ll arr[N];
 9 
10 struct SEG
11 {
12     ll a[N << 2][49], tmp[49]; 
13     int lazy[N << 2];
14     void init() { memset(a, 0, sizeof a); }
15     void pushup(int id)
16     {
17         for (int i = 0; i < 48; ++i) 
18             a[id][i] = (a[id << 1][(i + lazy[id << 1]) % 48] + a[id << 1 | 1][(i + lazy[id << 1 | 1]) % 48]) % MOD; 
19     }
20     void pushdown(int id)
21     {
22         if (!lazy[id]) return; 
23         lazy[id << 1] = (lazy[id << 1] + lazy[id]) % 48;
24         lazy[id << 1 | 1] = (lazy[id << 1 | 1] + lazy[id]) % 48;
25         for (int i = 0; i < 48; ++i) tmp[i] = a[id][(i + lazy[id]) % 48];
26         memcpy(a[id], tmp, sizeof tmp);
27         lazy[id] = 0;
28     }
29     void build(int id, int l, int r)
30     {
31         lazy[id] = 0;
32         if (l == r)
33         {
34             a[id][0] = arr[l];
35             for (int i = 1; i < 48; ++i)
36                 a[id][i] = a[id][i - 1] * a[id][i - 1] % MOD * a[id][i - 1] % MOD;
37             return;  
38         }
39         int mid = (l + r) >> 1;
40         build(id << 1, l, mid);
41         build(id << 1 | 1, mid + 1, r);
42         pushup(id); 
43     }
44     void update(int id, int l, int r, int ql, int qr, int val)
45     {
46         if (l >= ql && r <= qr)
47         {
48             lazy[id] = (lazy[id] + val) % 48; 
49             return;
50         }
51         pushdown(id);
52         int mid = (l + r) >> 1;
53         if (ql <= mid) update(id << 1, l, mid, ql, qr, val);
54         if (qr > mid) update(id << 1 | 1, mid + 1, r, ql, qr, val);
55         pushup(id);
56     }
57     ll query(int id, int l, int r, int ql, int qr)
58     {
59         if (l >= ql && r <= qr) return a[id][lazy[id]];
60         pushdown(id);
61         int mid = (l + r) >> 1;
62         ll res = 0;
63         if (ql <= mid) res = (res + query(id << 1, l, mid, ql, qr)) % MOD;
64         if (qr > mid) res = (res + query(id << 1 | 1, mid + 1, r, ql, qr)) % MOD;
65         //pushup(id);
66         return res;
67     }
68 }seg;
69 
70 void Run() 
71 {
72     scanf("%d", &t);
73     while (t--)
74     {
75         scanf("%d%d", &n, &q);
76         for (int i = 1; i <= n; ++i) scanf("%lld", arr + i), arr[i] %= MOD;
77         seg.build(1, 1, n); 
78         for (int i = 1, op, l, r; i <= q; ++i)
79         {
80             scanf("%d%d%d", &op, &l, &r);
81             if (op == 1) seg.update(1, 1, n, l, r, 1);
82             else printf("%lld\n", seg.query(1, 1, n, l, r));
83         }
84     }
85 }
86 
87 int main()
88 {
89     #ifdef LOCAL
90         freopen("Test.in", "r", stdin); 
91     #endif 
92 
93     Run();
94     return 0;
95 
96 }
View Code
 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 
 4 #define N 100010
 5 #define ll long long
 6 const ll MOD = 99971;
 7 int t, n, q;
 8 ll arr[N];
 9 
10 struct SEG
11 {
12     ll a[N << 2][50], tmp[50]; 
13     int lazy[N << 2];
14     void pushup(int id)
15     {
16         for (int i = 0; i < 48; ++i) 
17             a[id][i] = (a[id << 1][(i + lazy[id << 1]) % 48] + a[id << 1 | 1][(i + lazy[id << 1 | 1]) % 48]) % MOD; 
18     }
19     void build(int id, int l, int r)
20     {
21         lazy[id] = 0;
22         if (l == r)
23         {
24             a[id][0] = arr[l];
25             for (int i = 1; i < 48; ++i)
26                 a[id][i] = a[id][i - 1] * a[id][i - 1] % MOD * a[id][i - 1] % MOD;
27             return;  
28         }
29         int mid = (l + r) >> 1;
30         build(id << 1, l, mid);
31         build(id << 1 | 1, mid + 1, r);
32         pushup(id); 
33     }
34     void update(int id, int l, int r, int ql, int qr, int val)
35     {
36         if (l >= ql && r <= qr)
37         {
38             lazy[id] = (lazy[id] + 1) % 48; 
39             return;
40         }
41         int mid = (l + r) >> 1;
42         if (ql <= mid) update(id << 1, l, mid, ql, qr, val);
43         if (qr > mid) update(id << 1 | 1, mid + 1, r, ql, qr, val); 
44         pushup(id);
45     }
46     ll query(int id, int l, int r, int ql, int qr, int k = 0)
47     {
48         k = (k + lazy[id]) % 48;
49         if (l >= ql && r <= qr) return a[id][k];
50         int mid = (l + r) >> 1;
51         ll res = 0;
52         if (ql <= mid) res = (res + query(id << 1, l, mid, ql, qr, k)) % MOD;
53         if (qr > mid) res = (res + query(id << 1 | 1, mid + 1, r, ql, qr, k)) % MOD;
54         return res;
55     }
56 }seg;
57 
58 void Run() 
59 {
60     scanf("%d", &t);
61     while (t--)
62     {
63         scanf("%d%d", &n, &q);
64         for (int i = 1; i <= n; ++i) scanf("%lld", arr + i), arr[i] %= MOD;
65         seg.build(1, 1, n); 
66         for (int i = 1, op, l, r; i <= q; ++i)
67         {
68             scanf("%d%d%d", &op, &l, &r);
69             if (op == 1) seg.update(1, 1, n, l, r, 1);
70             else printf("%lld\n", seg.query(1, 1, n, l, r));
71         }
72     }
73 }
74 
75 int main()
76 {
77     #ifdef LOCAL
78         freopen("Test.in", "r", stdin); 
79     #endif 
80 
81     Run();
82     return 0;
83 
84 }
View Code

 

G - Neighboring Characters

留坑。

 

H - Happy Sequence ZOJ

题意:用1-n的数,每个数可以用无限次,组成长度为m的序列,求有多少个序列满足 $gcd(b_i, b_{i +1}) = b_{i}$

思路:考虑枚举序列里面不同的数的个数,根据题目范围,最多有10个不同的数,然后隔板法求方案数

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 
 4 #define ll long long
 5 long long f[15];
 6 long long C[15];
 7 long long MOD;
 8 int p[15];
 9 int n, m;
10 
11 void dp(int t) {
12     int j;
13     j = 2;
14     while (p[t - 1] * j <= n) {
15         p[t] = p[t - 1] * j;
16         f[t]++;
17         dp(t + 1);
18         j++;
19     }
20 }
21 
22 ll qmod(ll base, ll n)
23 {
24     ll res = 1;
25     while (n)
26     {
27         if (n & 1) res = res * base % MOD;
28         base = base * base % MOD;
29         n >>= 1;
30     }
31     return res;
32 }
33 
34 int main()
35 {
36     int i, j, t;
37     long long ans;
38     scanf("%d", &t);
39     MOD = 1000000007;
40     while (t--) {
41         scanf("%d %d", &n, &m);
42         memset(f, 0, sizeof f);
43         memset(p, 0, sizeof p);
44         ans = 0;
45         C[0] = 1;
46         for (i = 1; i <= 11 ; ++i)
47             C[i] = (C[i - 1] * (m - i) % MOD * qmod(i, MOD - 2)) % MOD;
48         for (i = 1; i <= n; ++i) {
49             p[1] = i;
50             ++f[1];
51             dp(2);
52         }
53         for (i = 1; i <= 11; ++i) {
54             ans = (ans + f[i] * C[i - 1] % MOD) % MOD;
55         }
56         printf("%lld\n",ans);
57     }
58     return 0;
59 }
View Code

 

I - Your Bridge is under Attack

 留坑。

 

J - Super Brain

水。

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 
 4 #define N 100010
 5 int n;
 6 int cnt[N * 10], a[N], b[N];
 7 
 8 int main()
 9 {
10     int t; scanf("%d", &t);
11     while (t--)
12     {
13         scanf("%d", &n);
14         for (int i = 1; i <= n; ++i) scanf("%d", a + i);
15         for (int i = 1; i <= n; ++i) scanf("%d", b + i);
16         memset(cnt, 0, sizeof cnt);
17         for (int i = 1; i <= n; ++i) ++cnt[a[i]];
18         int res = 0;
19         for (int i = 1; i <= n; ++i) if (cnt[b[i]] == 1) 
20         {
21             res = b[i];
22             break;
23         }
24         printf("%d\n", res);
25     }
26     return 0;
27 }
View Code

 

posted @ 2018-10-24 20:32  Dup4  阅读(213)  评论(0编辑  收藏  举报