2017 ACM/ICPC Asia Regional Qingdao Online Solution

A : Apple

题意:给出三个点,以及另一个点,求最后一个点是否在三个点的外接圆里面,如果在或者在边界上,输出“Rejected”,否则输出"Accepted"

思路:先求一个外接圆,得到圆心和半径,再判一下,注意精度问题,用JAVA

 1 import java.math.BigDecimal;
 2 import java.util.Scanner;
 3 
 4 public class Main {
 5 
 6     public static void main(String[] args) {
 7         Scanner in = new Scanner(System.in);
 8         int t = in.nextInt();
 9         for(int cas = 1; cas <= t; ++cas)
10         {
11             BigDecimal x1 = in.nextBigDecimal();
12             BigDecimal y1 = in.nextBigDecimal();
13             BigDecimal x2 = in.nextBigDecimal();
14             BigDecimal y2 = in.nextBigDecimal();
15             BigDecimal x3 = in.nextBigDecimal();
16             BigDecimal y3 = in.nextBigDecimal();
17             BigDecimal x = in.nextBigDecimal();
18             BigDecimal y = in.nextBigDecimal();
19             //x
20             BigDecimal temp1 = y2.subtract(y1);
21             BigDecimal temp2 = y3.multiply(y3).subtract(y1.multiply(y1)).add(x3.multiply(x3)).subtract(x1.multiply(x1));
22             BigDecimal temp3 = y3.subtract(y1);
23             BigDecimal temp4 = y2.multiply(y2).subtract(y1.multiply(y1)).add(x2.multiply(x2)).subtract(x1.multiply(x1));
24             temp1 = temp1.multiply(temp2);
25             temp3 = temp3.multiply(temp4);
26             BigDecimal x0 = temp1.subtract(temp3);
27             temp1 = x3.subtract(x1).multiply(y2.subtract(y1)).subtract(x2.subtract(x1).multiply(y3.subtract(y1)));
28             temp1 = temp1.multiply(BigDecimal.valueOf(2.0));
29             x0 = x0.divide(temp1);
30             //y
31             temp1 = x2.subtract(x1);
32             temp2 = x3.multiply(x3).subtract(x1.multiply(x1)).add(y3.multiply(y3)).subtract(y1.multiply(y1));
33             temp3 = x3.subtract(y1);
34             temp4 = x2.multiply(x2).subtract(y1.multiply(y1)).add(y2.multiply(y2)).subtract(y1.multiply(y1));
35             temp1 = temp1.multiply(temp2);
36             temp3 = temp3.multiply(temp4);
37             BigDecimal y0 = temp1.subtract(temp3);
38             temp1 = y3.subtract(y1).multiply(y2.subtract(y1)).subtract(y2.subtract(y1).multiply(x3.subtract(x1)));
39             temp1 = temp1.multiply(BigDecimal.valueOf(2.0));
40             y0 = y0.divide(temp1);
41             //r
42             temp1 = x1.subtract(x0);
43             temp2 = y1.subtract(y0);
44             temp1 = temp1.multiply(temp1);
45             temp2 = temp2.multiply(temp2);
46             BigDecimal r = temp1.add(temp2);
47             //dis
48             temp1 = x.subtract(x0);
49             temp2 = y.subtract(y0);
50             temp1 = temp1.multiply(temp1);
51             temp2 = temp2.multiply(temp2);
52             BigDecimal dis = temp1.add(temp2);
53             if(dis.compareTo(r) > 0)
54             {
55                 System.out.println("Accepted");
56             }
57             else
58             {
59                 System.out.println("Rejected");
60             }
61         }
62     }
63 }
64 //3
65 //-2 0 0 -2 2 0 2 -2
66 //-2 0 0 -2 2 0 0 2
67 //-2 0 0 -2 2 0 1 1
View Code

 

B:Bomberman

留坑。

 

C:The Dominator of Strings

题意:给出N个串,然后找出这N个串中是否有一个串包含其他所有串,如果有,输出那个串,如果没有,输出 No

思路:显然,如果答案存在,那么必定是长度最大的那个串。本来想着用KMP, 然后没想到用.find() 就可以过了。

 1 #include <bits/stdc++.h>
 2 
 3 using namespace std;
 4 
 5 #define N 100010
 6 
 7 string s[N], T;
 8 
 9 int t, n;
10 
11 int main()
12 {
13     cin.tie(0);
14     ios::sync_with_stdio(false);
15     cin >> t;
16     while (t--)
17     {
18         cin >> n;
19         int Max = 0, pos;
20         for (int i = 1; i <= n; ++i)
21         {
22             cin >> s[i];
23             if (s[i].length() > Max)
24             {
25                 Max = s[i].length();
26                 pos = i;
27             }    
28         }
29         int cnt = 0;
30         for (int i = 1; i <= n; ++i)
31         {
32             if (i == pos) continue;
33             if (s[pos].find(s[i]) != s[pos].npos)
34                 cnt++;
35         }
36         if (cnt == n - 1)
37             cout << s[pos] << endl;
38         else cout << "No\n";
39     }
40     return 0;
41 }
View Code

 KMP:

 1 // KMP 版本, 比.find() 还慢。。
 2 #include <bits/stdc++.h>
 3 
 4 using namespace std;
 5 
 6 #define N 100010
 7 
 8 int t, n;
 9 
10 int Next[N];
11 
12 inline void pre(string x, int m)
13 {
14     int i, j;
15     j = Next[0] = -1;
16     i = 0;
17     while (i < m)
18     {
19         while (-1 != j && x[i] != x[j]) j = Next[j];
20         if (x[++i] == x[++j]) Next[i] = Next[j];
21         else Next[i] = j;
22     }
23 }
24 
25 inline bool KMP(string x, int m, string y, int n)
26 {
27     int i, j;
28     pre(x, m);
29     i = j = 0;
30     while (i < n)
31     {
32         while (-1 != j && y[i] != x[j]) j = Next[j];
33         i++, j++;
34         if (j >= m)
35         {
36             return true;
37         }
38     }
39     return false;
40 }
41 
42 string s[N];
43 
44 int main()
45 {
46     cin.tie(0);
47     ios::sync_with_stdio(false);
48     cin >> t;
49     while (t--)
50     {
51         cin >> n;
52         int Max = 0, pos;
53         for (int i = 1; i <= n; ++i)
54         {
55             cin >> s[i];
56             if (s[i].length() > Max)
57             {
58                 Max = s[i].length();
59                 pos = i;
60             }        
61         }
62         int cnt = 0, len = s[pos].length();
63         for (int i = 1; i <= n; ++i)
64         {
65             if (i == pos) continue;
66             if (KMP(s[i], s[i].length(), s[pos], len))
67                 cnt++;
68             else
69                 break;
70         }
71         if (cnt == n - 1)
72             cout << s[pos] << "\n";
73         else
74             cout << "No\n";
75     }    
76 }
View Code

 

D:The Intersection

题意:给出两个函数,用一个有理分数去逼近两函数交点的横坐标,有理分数的分母小于1e5

思路:考虑二分

分数的二分可以用一个结论

a/b < (a + c) / (b + d) < c / d

然后考虑 k = k2 那么x3 = k 那么 先去逼近k  (x - 1)3 < k <= x  如果x3 == k  直接输出 x / 1

反之 令 l = (x - 1) / 2  r = (x) / 2  进行二分

 1 #include <bits/stdc++.h>
 2 
 3 using namespace std;
 4 
 5 #define ld long double
 6 #define ll long long 
 7 
 8 int t;
 9 
10 inline ll GCD(ll a, ll b) 
11 {
12     while (b ^= a ^= b ^= a %= b);
13         return a;
14 }
15 
16 int main()
17 {
18     cin.tie(0);
19     cout.tie(0);
20     ios::sync_with_stdio(false);
21     cin >> t;
22     while (t--)
23     {
24         ll k;
25         cin >> k;
26         ld K = k * k;        
27         ll x = 1;
28         while (x * x * x < K) x++;
29         if (x * x * x == K)
30         {
31             cout << x << "/1\n";
32             continue;
33         }
34         ll a = 1, b = x - 1, c = 1, d = x;
35         ll e, q, tar = K; 
36         ld gap = x * x * x - tar;  
37         while (true)
38         {
39             ll aa = a + c, bb = b + d;
40             if (aa > 1e5) break; 
41             ld tmp = (ld)bb * bb * bb / aa / aa / aa;
42             if (fabsl(tmp - tar) < gap) 
43             {
44                 gap = fabsl(tmp - tar);
45                 q = bb;
46                 e = aa;
47             }
48             if (tmp > tar)
49             {
50                 d = bb, c = aa;
51             }
52             else
53             {
54                 b = bb, a = aa;
55             }
56         }
57         cout << q << "/" << e << "\n";
58     }
59     return 0;
60 }
View Code

 

 

E:King's Visit

留坑。

 

F:Pythagoras

题意:找到所有满足$x^2 + y^2 = z^2$ 的$(x, y, z)$   $(x, y, z) < 1e9$ 满足 $x <y < z 并且 (x, y, z) 互质$ 计算 $\sum {a_{y mod 2^k}}$

思路:毕达哥拉斯三元组

$x = a^2 - b^2$

$y = 2ab$

$z = a^2 + b^2$

z最大 , x, y 大小不定 当 a, b 互质时,(x, y, z) 互质 并且 a > b

暴力枚举a, b  然后取模 (1 << 17)

计算的时候,假设 k = 2  那么 $x \equiv 1 \pmod k$ 相当于 $x \equiv 1 \pmod {1 << 17}$ $x \equiv 5 \pmod {1 << 17}$ ...

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 
 4 #define N 200010
 5 #define MOD 131072
 6 #define ll long long
 7 #define INF 1000000000
 8 
 9 int t, k, n;
10 int arr[N];
11 ll ans[N];
12 vector <int> fac[25000];
13 
14 inline bool ok(int x, int y) 
15 {
16     for (int i = 0, len = fac[y].size(); i < len; ++i)
17         if (x % fac[y][i] == 0) return false;
18     return true;
19 }
20 
21 inline void Init()
22 {
23     for (int i = 2; i * i <= (INF >> 1); i += 2)
24         fac[i].emplace_back(2);
25     int limit = sqrt(INF >> 1);  
26     for (int i = 3; i <= limit; i += 2) 
27     {
28         if (fac[i].empty())  
29             for (int j = i; j * j <= (INF >> 1); j += i)
30                 fac[j].emplace_back(i);
31     }
32     ll cnt = 0;
33     for (int b = 1; b * b <= (INF >> 1); ++b)
34     {
35         for (int a = b + 1; a * a + b * b <= INF; a += 2)
36         {
37             if (ok(a, b)) 
38                 ++ans[max(2 * a * b, a * a - b * b) % MOD];
39         }
40     }
41 }
42 
43 inline void Run()
44 {
45     Init();
46     scanf("%d", &t);
47     while (t--)
48     {
49         scanf("%d", &k); n = 1 << k;
50         for (int i = 0; i < n; ++i) scanf("%d", arr + i);
51         ll sum = 0;
52         for (int i = 0; i < n; ++i)
53             for (int j = 0; j * n + i < MOD; ++j)
54                 sum += (ll)arr[i] * ans[j * n + i];
55         printf("%lld\n", sum);
56     }
57 }
58 
59 
60 int main()
61 {
62     #ifdef LOCAL
63         freopen("Test.in", "r", stdin);
64     #endif
65 
66     Run();
67 
68     return 0;
69 }
View Code

 

 

 

G:Zuma

题意:给出一个01串,若有三个相同的就可以消去,如果没有,可以发射若干个0或者若干个1使之消去,会有连锁反应,求最少的发射数

思路:我们可以先预处理一下,使得相同颜色的合并在一起。那么考虑 i, j  若第i个 与第j个 颜色相同

那么 dp[i][j] = dp[i + 1][j - 1] + max(3 - v[i] - v[j], 0) (v[] 表示这个合并后的区间内有多少个这种颜色)

还有一个区间dp通用转移方程 dp[i][j] = min(dp[i][j], dp[i][k], dp[k + 1][j])

还要考虑一个 如果 存在 i, j, k   若 v[i] + v[k] < 3 || v[k] + v[j] < 3

那么它们可能可以通过消去 区间[i + 1][k - 1] 和 [k + 1][j - 1] 来使得这三个产生连锁反应而有更优的答案

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 
 4 #define N 210
 5 
 6 typedef pair <int, int> pii;
 7 
 8 int t, cnt;
 9 char s[N];
10 pii arr[N];
11 int dp[N][N];
12 
13 inline void Run()
14 {
15     scanf("%d", &t);
16     for (int kase = 1; kase <= t; ++kase)
17     {
18         printf("Case #%d: ", kase);
19         scanf("%s", s + 1);
20         cnt = 0;
21         for (int i = 1, len = strlen(s + 1); i <= len; ++i) 
22         {
23             int id = s[i] - '0';
24             if (i == 1 || id != arr[cnt].second)
25                 arr[++cnt].first = 1, arr[cnt].second = id;
26             else
27                 ++arr[cnt].first;
28         }
29         memset(dp, 0x3f, sizeof dp);
30         for (int i = 1; i <= cnt; ++i) dp[i][i] = (arr[i].first == 2 ? 1 : 2);
31         for (int i = 2; i <= cnt; ++i)
32         {
33             for (int j = 1; j + i - 1 <= cnt; ++j) 
34             {
35                 int l = j, r = j + i - 1;
36                 if (arr[l].second == arr[r].second)
37                     dp[l][r] = dp[l + 1][r - 1] + max(3 - arr[l].first - arr[r].first, 0); 
38                 for (int k = l; k < r; ++k)
39                     dp[l][r] = min(dp[l][r], dp[l][k] + dp[k + 1][r]);  
40                 if (arr[l].second == arr[r].second)
41                     for (int k = l + 1; k < r; ++k) 
42                     {
43                         if (arr[l].second == arr[k].second && (arr[l].first + arr[k].first < 3 || arr[k].first + arr[r].first < 3))
44                             dp[l][r] = min(dp[l][r], max(3 - arr[l].first - arr[k].first - arr[r].first, 0) + dp[l + 1][k - 1] + dp[k + 1][r - 1]); 
45                     }
46             }
47         }
48         printf("%d\n", dp[1][cnt]);
49     }
50 }
51 
52 
53 int main()
54 {
55     #ifdef LOCAL
56         freopen("Test.in", "r", stdin);
57     #endif
58 
59     Run();
60 
61     return 0;
62 }
View Code

 

 

H:Chinese Zodiac

按题意输出即可

 1 #include <bits/stdc++.h>
 2 
 3 using namespace std;
 4 
 5 map <string, int> mp;
 6 
 7 inline void Init()
 8 {
 9     mp["rat"] = 1;
10     mp["ox"] = 2;
11     mp["tiger"] = 3;
12     mp["rabbit"] = 4;
13     mp["dragon"] = 5;
14     mp["snake"] = 6;
15     mp["horse"] = 7;
16     mp["sheep"] = 8;
17     mp["monkey"] = 9;
18     mp["rooster"] = 10;
19     mp["dog"] = 11;
20     mp["pig"] = 12;
21 }
22 
23 int t;
24 
25 int main()
26 {
27     cin.tie(0);
28     ios::sync_with_stdio(false);
29     Init(); cin >> t;
30     string a, b;
31     while (t--)
32     {
33         cin >> a >> b;
34         int ans = mp[b] - mp[a];
35         if (ans < 1) ans += 12;
36         cout << ans << endl;
37     }
38 }
View Code

 

I:Smallest Minimum Cut

题意:给出一张图,然后给出两个点S, T, 要求选取一个含有最小边的一个边集,使得其流量为最大流

思路一: 可以将所有边权都乘以一个较大的数 + 1,那么本来边比较多的最大流,这样处理之后就不再是最大流,答案就是最大流%较大的数,因为这样处理之后,不会存在边数相同并且最大流相同的情况,可以分开考虑

因为最大流肯定是由若干个满流的容量组成,那么最后的最大流答案肯定是n * m + x  (m 为一个较大的数,x 为边数)

如果存在更少边使得组成最大流,那么最大流肯定是 n2 * m + x2 (易知x2 < x 那么显然n2 > n) 那么这个流肯定比上面那个大,那么这个才是答案,矛盾

如果存在更多边使得组成最大流,那么最大流肯定是n3 * m + x3 (显然 x3 > x 那么 n3 < n) 因为 m足够大,那么这个最大流肯定要小于上面那个最大流,这个不会是答案

思路二:跑一边网络流后,如果有一条路是满流的话,那么这条路可能为所求答案的其中一条路,将这条路的流量改为1,再将其他路的流量改成1e9,再跑一次网络流就可以得出所求答案。

 思路一:

  1 #include<bits/stdc++.h>
  2 using namespace std;
  3 
  4 const int maxn = 1e3 + 10;
  5 const int INF = 0x3f3f3f3f;
  6 
  7 int n, m;
  8 
  9 struct Edge{
 10     int from;
 11     int to;
 12     int cap;
 13     int flow;
 14     inline Edge(){}
 15     inline Edge(int from,int to,int cap,int flow):from(from), to(to), cap(cap), flow(flow){}
 16 };
 17 
 18 vector<Edge>edge;
 19 vector<int>G[maxn];
 20 int vis[maxn];
 21 int d[maxn];
 22 int cur[maxn];
 23 int S,T;
 24 
 25 inline void init()
 26 {
 27     edge.clear();
 28     for(int i = 1; i <= n; ++i)
 29         G[i].clear();
 30 }
 31 
 32 inline void addedge(int from,int to,int cap)
 33 {
 34     edge.push_back(Edge(from,to,cap,0));
 35     edge.push_back(Edge(to,from,0,0));
 36     int len = edge.size();
 37     G[from].push_back(len - 2);
 38     G[to].push_back(len - 1);
 39 }
 40 
 41 inline bool bfs()
 42 {
 43     memset(d,0,sizeof d);
 44     memset(vis,0,sizeof vis);
 45     queue<int>q;
 46     q.push(S);
 47     d[S] = 1;
 48     vis[S] = 1;
 49     while(!q.empty())
 50     {
 51         int x = q.front();
 52         q.pop();
 53         for(int i = 0; i < G[x].size(); ++i)
 54         {
 55             Edge &e = edge[G[x][i]];
 56             for(int i = 0; i < G[x].size(); ++i)
 57             {
 58                 Edge &e = edge[G[x][i]];
 59                 if(!vis[e.to] && e.cap > e.flow)
 60                 {
 61                     vis[e.to] = 1;
 62                     d[e.to] = d[x] + 1;
 63                     q.push(e.to);
 64                 }            
 65             }
 66         }
 67     }
 68     return vis[T];
 69 }
 70 
 71 inline int dfs(int x,int a)
 72 {
 73     if(x == T || a == 0) return a;
 74     int flow = 0;
 75     int f;
 76     for(int &i = cur[x]; i < G[x].size(); ++i)
 77     {
 78         Edge &e = edge[G[x][i]];
 79         if(d[x] + 1 == d[e.to] && (f = dfs(e.to, min(a, e.cap- e.flow))) > 0)
 80         {
 81             e.flow += f;
 82             edge[G[x][i] ^ 1].flow -= f;
 83             flow += f;
 84             a -= f;
 85             if(a == 0) break;
 86         }
 87     }
 88     return flow;
 89 }
 90 
 91 inline int dicnic()
 92 {
 93     int ans = 0;
 94     while(bfs())
 95     {
 96         memset(cur,0,sizeof cur);
 97         ans += dfs(S,INF);
 98     }
 99     return ans;
100 }
101 
102 int main()
103 {
104     int t;
105     scanf("%d",&t);
106     while(t--)
107     {
108         init();
109         scanf("%d %d",&n, &m);
110         scanf("%d %d",&S, &T);
111         for(int i = 1;i <= m; ++i)
112         {
113             int x, y, z;
114             scanf("%d %d %d",&x, &y,&z);
115             addedge(x,y,z * 999 + 1);
116         }
117         int ans = dicnic();
118         printf("%d\n",ans % 999);
119     }
120     return 0;
121 }
View Code

 思路二:

  1 #include<bits/stdc++.h>
  2 using namespace std;
  3 
  4 const int maxn = 1e3 + 10;
  5 const int INF = 0x3f3f3f3f;
  6 
  7 int n, m;
  8 
  9 struct Edge {
 10     int from;
 11     int to;
 12     int cap;
 13     int flow;
 14     inline Edge() {}
 15     inline Edge(int from, int to, int cap, int flow) :from(from), to(to), cap(cap), flow(flow) {}
 16 };
 17 
 18 vector<Edge>edge;
 19 vector<int>G[maxn];
 20 int vis[maxn];
 21 int d[maxn];
 22 int cur[maxn];
 23 int S, T;
 24 
 25 inline void init()
 26 {
 27     edge.clear();
 28     for (int i = 1; i <= n; ++i)
 29         G[i].clear();
 30 }
 31 
 32 inline void addedge(int from, int to, int cap)
 33 {
 34     edge.push_back(Edge(from, to, cap, 0));
 35     edge.push_back(Edge(to, from, 0, 0));
 36     int len = edge.size();
 37     G[from].push_back(len - 2);
 38     G[to].push_back(len - 1);
 39 }
 40 
 41 inline bool bfs()
 42 {
 43     memset(d, 0, sizeof d);
 44     memset(vis, 0, sizeof vis);
 45     queue<int>q;
 46     q.push(S);
 47     d[S] = 1;
 48     vis[S] = 1;
 49     while (!q.empty())
 50     {
 51         int x = q.front();
 52         q.pop();
 53         for (int i = 0; i < G[x].size(); ++i)
 54         {
 55             Edge &e = edge[G[x][i]];
 56             for (int i = 0; i < G[x].size(); ++i)
 57             {
 58                 Edge &e = edge[G[x][i]];
 59                 if (!vis[e.to] && e.cap > e.flow)
 60                 {
 61                     vis[e.to] = 1;
 62                     d[e.to] = d[x] + 1;
 63                     q.push(e.to);
 64                 }
 65             }
 66         }
 67     }
 68     return vis[T];
 69 }
 70 
 71 inline int dfs(int x, int a)
 72 {
 73     if (x == T || a == 0) return a;
 74     int flow = 0;
 75     int f;
 76     for (int &i = cur[x]; i < G[x].size(); ++i)
 77     {
 78         Edge &e = edge[G[x][i]];
 79         if (d[x] + 1 == d[e.to] && (f = dfs(e.to, min(a, e.cap - e.flow))) > 0)
 80         {
 81             e.flow += f;
 82             edge[G[x][i] ^ 1].flow -= f;
 83             flow += f;
 84             a -= f;
 85             if (a == 0) break;
 86         }
 87     }
 88     return flow;
 89 }
 90 
 91 inline int dicnic()
 92 {
 93     int ans = 0;
 94     while (bfs())
 95     {
 96         memset(cur, 0, sizeof cur);
 97         ans += dfs(S, INF);
 98     }
 99     return ans;
100 }
101 
102 int main()
103 {
104     int t;
105     scanf("%d", &t);
106     while (t--)
107     {
108         init();
109         scanf("%d %d", &n, &m);
110         scanf("%d %d", &S, &T);
111         for (int i = 1; i <= m; ++i)
112         {
113             int x, y, z;
114             scanf("%d %d %d", &x, &y, &z);
115             addedge(x, y, z);
116         }
117         int ans = dicnic();
118         for (int i = 1; i <= n; ++i)
119         {
120             for (int j = 0; j < G[i].size(); ++j)
121             {
122                 int it = G[i][j];
123                 if (edge[it].cap == 0) continue;
124                 if (edge[it].flow == edge[it].cap)
125                 {
126                     edge[it].cap = 1;
127                     edge[it].flow = 0;
128                 }
129                 else
130                 {
131                     edge[it].cap = INF;
132                     edge[it].flow = 0;
133                 }
134             }
135         }
136         ans = dicnic();
137         printf("%d\n", ans);
138     }
139     return 0;
140 }
View Code

 

 

 

J:Brute Force Sorting

题意:给出N个数,如果arr[i] > arr[i + 1] 那么,这连个数都要删去,删若干轮后,直到不能删,输出最终的序列

思路:可以想到,如果在第一轮中,两个数被删去了,那么在下一轮可能被删去的数就有这两个数左边邻接的一个数,右边邻接的一个数,压入队列,继续判断。

因为每个数最多入队一次,最坏的时间复杂度O(n),

 1 #include <bits/stdc++.h>
 2 
 3 using namespace std;
 4 
 5 #define INF 0x3f3f3f3f
 6 #define N 100100
 7 
 8 int t, n;
 9 int arr[N];
10 int L[N], R[N], vis[N];
11 
12 queue <int> q;
13 
14 int main()
15 {
16     cin.tie(0);
17     ios::sync_with_stdio(false);
18     cin >> t;
19     while (t--)
20     {
21         cin >> n; 
22         for (int i = 1; i <= n; ++i)
23         {
24             cin >> arr[i];
25             L[i] = i - 1, R[i] = i + 1; 
26             vis[i] = 0; 
27         }
28         arr[0] = 0; arr[n + 1] = INF; 
29         while (!q.empty()) q.pop();
30         for (int i = 1; i <= n; ++i)
31         {
32             if (arr[i] < arr[i - 1] || arr[i] > arr[i + 1]) 
33                 q.emplace(i), vis[i] = 1;
34         }    
35         while (!q.empty())
36         {
37             int u = q.front(); q.pop();
38             int l = L[u], r = R[u];
39             R[l] = r, L[r] = l;
40             if (l && r != n + 1 && !vis[r] && arr[l] > arr[r])
41             {
42                 q.emplace(l); vis[l] = 1;
43                 q.emplace(r); vis[r] = 1;
44             }
45         }
46         int cnt = 0;
47         for (int i = 1; i <= n; ++i) if (!vis[i]) cnt++;
48         cout << cnt << endl;
49         for (int i = 1; i <= n; ++i) if (!vis[i])
50             cout << arr[i] << " ";
51         cout << "\n";
52     }
53 }
View Code

 

 

K:A Cubic number and A cunbic Number

题意:给出一个素数p,判断它是不是能不能由两个不同的立方数相减得到

思路:假设p = a3 - b3 那么根据立方差公式 p = (a - b)(a2 + b2 + ab)   显然 (a - b) < (a2  + b2 + ab) 又p为素数 所以必然有一个为1,显然 (a - b) = 1

那么 p = (a2 + b2 + ab) 将a - b = 1 代入 有 p = 3a2 + 3a + 1;

预处理一下即可

 1 #include <bits/stdc++.h>
 2 
 3 using namespace std;
 4 
 5 #define ll long long
 6 
 7 unordered_map <ll, bool> mp;
 8 
 9 const ll D = (ll)1e12;
10 
11 inline void Init()
12 {
13     mp.clear();
14     for (ll i = 1; true; ++i)
15     {
16         ll value = 3 * i * i + 3 * i + 1;
17         if (value > D) break;
18         mp[value] = true;
19     }
20 }
21 
22 int t;
23 ll p;
24 
25 int main()
26 {
27     Init();
28     scanf("%d", &t);
29     while (t--)
30     {
31         scanf("%lld", &p);
32         puts(mp[p] ? "YES" : "NO");
33     }
34     return 0;
35 }
View Code

 

 


 

 赛后总结:

  • 如果TLE了,要检查一下是否是数组开小
  • 如果开了队列或栈,MLE了,检查一下是否是死循环,一直在入栈,入队
  • 如果计算几何或者有浮点数精度问题的,要考虑JAVA BigDecimal
  • 输出的时候一定要检查格式,末尾有没有空格
  • 输出YES NO 的答案时,一定要检查大小写是否正确
  • 有时候要考虑队列暴力,栈暴力,不要一提到暴力,想到的就是很暴的暴力
  • 如果数论题给出数特别特殊,比如说素数,一定要考虑其性质,即它不能表示为两个数的乘积之和,1除外
  • 如果出现自己认为思路正确却依然wrong answer的时候,可以考虑重新写以及思路错误两个方面,而不是一味在原来代码上更改。
  • 如果模数是2的幂次,那么卡常数取模可以用&(2 ^ k - 1)
  • 二分的题目不一定每次都是取中间值,可以考虑其他值

 

posted @ 2018-08-10 19:47  Dup4  阅读(268)  评论(0编辑  收藏  举报