Codeforces Round #574 (Div. 2)
Contest Info
[Practice Link](https://codeforc.es/contest/1195)
Solved | A | B | C | D1 | D2 | E | F |
---|---|---|---|---|---|---|---|
6/7 | O | O | O | O | O | Ø | - |
- O 在比赛中通过
- Ø 赛后通过
- ! 尝试了但是失败了
- - 没有尝试
Solutions
A. Drinks Choosing
题意:
有\(n\)个人,每个人喜欢吃第\(k_i\)种糖果,现在商店售卖的糖果是一盒两个的,要买最少数量的盒数,即\(\left\lceil \frac{n}{2} \right\rceil\)盒,并且使得尽量多的人吃上自己喜欢吃的糖果
思路:
将喜欢吃同一种糖果的人放在一起,每次贪心取两个给他们一盒,这样他们的贡献是满的。
剩下的肯定是每种糖果最多只有一个人喜欢吃,那么贡献就是剩余的盒数。
代码:
#include <bits/stdc++.h>
using namespace std;
#define N 1010
int n, k, a[N];
int main() {
while (scanf("%d%d", &n, &k) != EOF) {
memset(a, 0, sizeof a);
for (int i = 1, x; i <= n; ++i) {
scanf("%d", &x);
++a[x];
}
int res = 0;
int num = n / 2 + (n & 1);
for (int i = 1; i <= k; ++i) {
while (a[i] >= 2 && num > 0) {
--num;
a[i] -= 2;
res += 2;
}
}
printf("%d\n", res + num);
}
return 0;
}
B. Sport Mafia
题意:
有两种操作:
- 如果当前盒子里还有糖果,那么可以去掉一个糖果
- 放入盒子一些糖果,糖果的数量是上次放入的数量$ + 1\( 问最终给出操作次数\)n\(以及最终盒子里的糖果数量\)k$,问在操作过程中有多少种操作是第一种操作。
思路:
答案显然是\(i \in [1, n]\),并且满足:
相当于求
的方程的根。
显然该二次方程的对称轴在\(-\frac{3}{2}\),所以在\([1, n]\)范围内的根只有一个。
所以直接暴力即可,因为\(i\)的枚举量大概在\(\mathcal{O}(\sqrt{n})\)
代码:
#include <bits/stdc++.h>
using namespace std;
#define ll long long
ll n, k;
ll f(int x) {
return 1ll * x * (x + 1) / 2;
}
int main() {
while (scanf("%lld%lld", &n, &k) != EOF) {
for (int i = 1; i <= n; ++i) {
if (f(i) - (n - i) == k) {
printf("%lld\n", n - i);
break;
}
}
}
return 0;
}
C. Basketball Exercise
题意:
有两排人,每排\(n\)个人,现在要求在这两排人中选出一些人,使得他们身高和最高,并且满足以下限制:
- 每一排中被选中的人数不能相邻
- 选择的下标要是递增的
代码:
考虑\(f[i][0/1/2]\)表示到第\(i\)个列位置,选择的是第一排的人,还是第二排的人,还是这一列不选。
转移即可。
思路:
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define N 100010
int n;
ll h[N][2], f[N][2];
int main() {
while (scanf("%d", &n) != EOF) {
for (int i = 1; i <= n; ++i) {
scanf("%lld", &h[i][0]);
}
for (int i = 1; i <= n; ++i) {
scanf("%lld", &h[i][1]);
}
memset(f, 0, sizeof f);
f[1][0] = h[1][0];
f[1][1] = h[1][1];
ll res = 0;
for (int i = 2; i <= n; ++i) {
f[i][0] = h[i][0] + f[i - 1][1];
f[i][1] = h[i][1] + f[i - 1][0];
if (i > 2) {
f[i][0] = max(f[i][0], h[i][0] + max(f[i - 2][0], f[i - 2][1]));
f[i][1] = max(f[i][1], h[i][1] + max(f[i - 2][0], f[i - 2][1]));
}
}
for (int i = 1; i <= n; ++i) {
for (int j = 0; j < 2; ++j) {
res = max(res, f[i][j]);
}
}
printf("%lld\n", res);
}
return 0;
}
D1. Submarine in the Rybinsk Sea (easy edition)
题意:
定义拼接函数\(f(a_1a_2 \cdots a_p, b_1b_2 \cdots b_q)\):
再给出一个序列\(a_i\),询问:
在这里保证\(a_i\)的位数相同。
思路:
既然位数相同,那么我们就知道\(f(a_i, ?)\)时\(a_i\)的贡献,以及\(f(?, a_i)\)时\(a_i\)的贡献,分别计算即可。
代码:
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define N 100010
const ll p = 998244353;
int n, a[N], len;
int getlen(int x) {
int res = 0;
while (x) {
++res;
x /= 10;
}
return res;
}
ll f(ll x) {
ll tot = 0;
vector <int> vec;
while (x) {
vec.push_back(x % 10);
x /= 10;
}
reverse(vec.begin(), vec.end());
for (auto it : vec) {
tot = tot * 10 + it;
tot = tot * 10 + it;
tot %= p;
}
return tot * n % p;
}
int main() {
while (scanf("%d", &n) != EOF) {
for (int i = 1; i <= n; ++i) {
scanf("%d", a + i);
}
len = getlen(a[1]);
ll res = 0;
for (int i = 1; i <= n; ++i) {
res += f(a[i]);
res %= p;
}
printf("%lld\n", res);
}
return 0;
}
D2. Submarine in the Rybinsk Sea (hard edition)
题意:
同\(D1\),但是不保证\(a_i\)位数相同。
思路:
位数最多只有\(10\)位,直接暴枚\(a_i\)对应的\(a_j\)的不同位数的贡献即可。
\(10^9\)是一个十位的数字。
代码:
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define N 100010
const ll p = 998244353;
int n, a[N], num[N];
vector <vector<int>> vec;
int sze[20];
int getlen(int x) {
int res = 0;
while (x) {
++res;
x /= 10;
}
return res;
}
ll f(ll x, int a, int b, int n) {
vector <int> vec, A(22, 0);
while (x) {
vec.push_back(x % 10);
x /= 10;
}
reverse(vec.begin(), vec.end());
int len = a + b;
if (a >= b) {
auto it = vec.begin();
for (int i = 1; i <= a - b + 1; ++i) {
A[i] = *it;
++it;
}
for (int i = a - b + 3; i <= len; i += 2) {
A[i] = *it;
++it;
}
} else {
auto it = vec.begin();
for (int i = b - a + 1; i <= len; i += 2) {
A[i] = *it;
++it;
}
}
// for (int i = 1; i <= len; ++i) printf("%d%c", A[i], " \n"[i == len]);
ll tot = 0;
for (int i = 1; i <= len; ++i) {
tot = tot * 10 + A[i];
tot %= p;
}
return tot * n % p;
}
ll g(ll x, int b, int a, int n) {
vector <int> vec, A(22, 0);
while (x) {
vec.push_back(x % 10);
x /= 10;
}
reverse(vec.begin(), vec.end());
int len = a + b;
if (a >= b) {
auto it = vec.begin();
for (int i = a - b + 2; i <= len; i += 2) {
A[i] = *it;
++it;
}
} else {
auto it = vec.begin();
for (int i = 1; i <= b - a; ++i) {
A[i] = *it;
++it;
}
for (int i = b - a + 2; i <= len; i += 2) {
A[i] = *it;
++it;
}
}
ll tot = 0;
for (int i = 1; i <= len; ++i) {
tot = tot * 10 + A[i];
tot %= p;
}
return tot * n % p;
}
int main() {
while (scanf("%d", &n) != EOF) {
vec.clear();
vec.resize(20);
for (int i = 1; i <= n; ++i) {
scanf("%d", a + i);
vec[getlen(a[i])].push_back(a[i]);
}
for (int i = 1; i <= 10; ++i) sze[i] = (int)vec[i].size();
ll res = 0;
for (int i = 1; i <= 10; ++i) if (sze[i]) {
for (auto it : vec[i]) {
for (int j = 1; j <= 10; ++j) if (sze[j]) {
res += f(it, i, j, sze[j]);
res %= p;
res += g(it, i, j, sze[j]);
res %= p;
}
}
}
printf("%lld\n", res);
}
return 0;
}
E. OpenStreetMap
题意:
求\(n \cdot m\)的矩形中\(a \cdot b\)的所有小矩形的最小值之和。
思路:
二维\(RMQ\)是过不去的。。
考虑复杂度肯定为\(\mathcal{O}(nm)\)。
我们可以竖着枚举矩形右下角,然后再横着枚举。
考虑用\(3000\)个单调队列维护每一行枚举到的最小值,再用一个单调队列维护\(a \cdot b\)矩形内的最小值。
注意加点的时间以及删点的判断。
代码:
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define N 3010
int n, m, a, b;
ll g[N * N], x, y, z;
int B[N][N], l[N], r[N], que[N], L, R;
int get(int x, int y) {
return (x - 1) * m + y - 1;
}
int main() {
while (scanf("%d%d%d%d", &n, &m, &a, &b) != EOF) {
L = 1, R = 0;
for (int i = 1; i <= n; ++i) l[i] = 1, r[i] = 0;
scanf("%lld%lld%lld%lld", g, &x, &y, &z);
for (int i = 1; i <= n * m; ++i) g[i] = (g[i - 1] * x + y) % z;
for (int i = 1; i <= n; ++i) {
for (int j = 1; j < b; ++j) {
while (l[i] <= r[i] && g[get(i, j)] < g[B[i][r[i]]]) {
--r[i];
}
B[i][++r[i]] = get(i, j);
}
}
ll res = 0;
for (int i = 1; i <= a; ++i) {
while (L <= R && g[B[i][l[i]]] < g[que[R]]) --R;
que[++R] = B[i][l[i]];
}
for (int j = b; j <= m; ++j) {
for (int i = 1; i <= n; ++i) {
while (l[i] <= r[i] && abs(B[i][l[i]] - get(i, j)) >= b) ++l[i];
while (l[i] <= r[i] && g[get(i, j)] < g[B[i][r[i]]]) --r[i];
B[i][++r[i]] = get(i, j);
}
L = 1, R = 0;
for (int i = 1; i < a; ++i) {
while (L <= R && g[B[i][l[i]]] < g[que[R]]) --R;
que[++R] = B[i][l[i]];
}
for (int i = a; i <= n; ++i) {
while (L <= R && abs(que[L] - get(i, j)) >= (a - 1) * m + b) ++L;
while (L <= R && g[B[i][l[i]]] < g[que[R]]) --R;
que[++R] = B[i][l[i]];
res += g[que[L]];
}
}
printf("%lld\n", res);
}
return 0;
}