Codeforces Round #523 (Div. 2) Solution

A. Coins

Water.

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 int n, s;
 4 
 5 int main()
 6 {
 7     while (scanf("%d%d", &n, &s) != EOF)
 8     {
 9         int res = 0;
10         for (int i = n; i >= 1; --i) while (s >= i) 
11         {
12             ++res;
13             s -= i;
14         }
15         printf("%d\n", res);
16     }
17     return 0;
18 }
View Code

 

 

B. Views Matter

Solved.

题意:

有n个栈,不受重力影响,在保持俯视图以及侧视图不变的情况下,最多可以移掉多少个方块

思路:

考虑原来那一列有的话那么这一列至少有一个,然后贪心往高了放

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 
 4 #define ll long long
 5 #define N 100010
 6 int n, m;
 7 ll a[N], sum;
 8 
 9 int main()
10 {
11     while (scanf("%d%d", &n, &m) != EOF)
12     {
13         sum = 0;
14         for (int i = 1; i <= n; ++i) scanf("%lld", a + i), sum += a[i];
15         sort(a + 1, a + 1 + n);
16         ll res = 0, high = 0;
17         for (int i = 1; i <= n; ++i) if (a[i] > high) 
18             ++high;
19         printf("%lld\n", sum - n - a[n] + high);
20     }
21     return 0;
22 }
View Code

 

C. Multiplicity

Upsolved.

题意:

定义一个序列为好的序列即$b_1, b_2, ...., b_k 中i \in [1, k] 使得 b_i % i == 0$

求有多少个好的子序列

思路:

考虑$Dp$

$令dp[i][j] 表示第i个数,长度为j的序列有多少种方式$

$dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]   (arr[j] % j == 0)$

否则 $dp[i][j] = dp[i - 1][j]$

然后不能暴力递推,只需要更新$arr[j] % j == 0 的j即可$

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 
 4 #define ll long long
 5 #define N 1000100
 6 const ll MOD = (ll)1e9 + 7;
 7 int n; ll a[N], dp[N];
 8 
 9 int main()
10 {
11     while (scanf("%d", &n) != EOF)
12     {
13         for (int i = 1; i <= n; ++i) scanf("%lld", a + i);
14         memset(dp, 0, sizeof dp);
15         dp[0] = 1;    
16         for (int i = 1; i <= n; ++i)
17         {
18             vector <int> cur;
19             for (int j = 1; j * j <= a[i]; ++j)
20             {
21                 if (a[i] % j == 0)
22                 {
23                     cur.push_back(j);
24                     if (j != a[i] / j)
25                         cur.push_back(a[i] / j);
26                 }
27             }
28             sort(cur.begin(), cur.end());
29             reverse(cur.begin(), cur.end());
30             for (auto it : cur)
31                 dp[it] = (dp[it] + dp[it - 1]) % MOD;
32         }
33         ll res = 0;
34         for (int i = 1; i <= 1000000; ++i) res = (res + dp[i]) % MOD;
35         printf("%lld\n", res);    
36     }
37     return 0;
38 }
View Code

 

D. TV Shows

Upsolved.

题意:

有n个电视节目,每个节目播放的时间是$[l, r],租用一台电视机的费用为x + y \cdot time$

一台电视机同时只能看一个电视节目,求看完所有电视节目最少花费

思路:

贪心。

因为租用电视机的初始费用是相同的,那么我们将电视节目将左端点排序后

每次选择已经租用的电视机中上次放映时间离自己最近的,还要比较租用新电视机的费用,

如果是刚开始或者没有一台电视机闲着,则需要租用新的电视机

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 
 4 #define ll long long
 5 #define N 100010
 6 struct node
 7 {
 8     ll l, r;
 9     void scan() { scanf("%lld%lld", &l, &r); }
10     bool operator < (const node &r) const 
11     {
12         return l < r.l || (l == r.l && this->r < r.r);
13     }
14 }arr[N];
15 int n; ll x, y;
16 const ll MOD = (ll)1e9 + 7;
17 multiset <ll> se;
18 
19 int main()
20 {
21     while (scanf("%d%lld%lld", &n, &x, &y) != EOF) 
22     {
23         for (int i = 1; i <= n; ++i) arr[i].scan();
24         sort(arr + 1, arr + 1 + n);
25         ll res = 0;
26         for (int i = 1; i <= n; ++i)
27         {
28             if (se.lower_bound(arr[i].l) == se.begin())
29                 res = (res + x + y * (arr[i].r - arr[i].l) % MOD) % MOD;
30             else
31             {
32                 int pos = *(--se.lower_bound(arr[i].l)); 
33                 if (x < y * (arr[i].l - pos)) 
34                     res = (res + x + y * (arr[i].r - arr[i].l) % MOD) % MOD;
35                 else
36                 {
37                     se.erase(--se.lower_bound(arr[i].l));
38                     res = (res + y * (arr[i].r - pos) % MOD) % MOD; 
39                 }    
40             }
41             se.insert(arr[i].r); 
42         }
43         printf("%lld\n", res);
44     }
45     return 0;
46 }
View Code

 

E. Politics

Unsolved.

 

F. Lost Root

Unsolved.

posted @ 2018-11-28 19:43  Dup4  阅读(155)  评论(0编辑  收藏  举报