[模板] 杜教筛

这个是一个处理积极性函数前缀和的东西,先把能处理的范围的函数值处理出来,然后数论分块,递归处理这些值,一点点缩小这个的范围,从而计算出函数值。

具体看代码就行了,不是很难。

洛谷的模板题是处理μ和φ的前缀和。

代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<ctime>
#include<queue>
#include<algorithm>
#include<cstring>
#include<unordered_map>
using namespace std;
#define duke(i,a,n) for(register int i = a;i <= n;i++)
#define lv(i,a,n) for(register int i = a;i >= n;i--)
#define clean(a) memset(a,0,sizeof(a))
const int INF = 1 << 30;
typedef long long ll;
typedef double db;
template <class T>
void read(T &x)
{
    char c;
    bool op = 0;
    while(c = getchar(), c < '0' || c > '9')
        if(c == '-') op = 1;
    x = c - '0';
    while(c = getchar(), c >= '0' && c <= '9')
        x = x * 10 + c - '0';
    if(op) x = -x;
}
template <class T>
void write(T x)
{
    if(x < 0) putchar('-'), x = -x;
    if(x >= 10) write(x / 10);
    putchar('0' + x % 10);
}
const int N = 5e6 + 5;
int miu[N + 2],flag[N + 2],pri[N + 5];
ll phi[N + 2],tot = 0;
unordered_map <int,ll> ansmiu,ansphi;
void init()
{
    miu[1] = 1;
    phi[1] = 1;
    duke(i,2,N)
    {
        if(!flag[i])
        {
            pri[++tot] = i;
            phi[i] = i - 1;
            miu[i] = -1;
        }
        for(int j = 1;j <= tot;j++)
        {
            if(i * pri[j] > N) break;
            flag[i * pri[j]] = 1;
            if(i % pri[j] == 0)
            {
                phi[i * pri[j]] = phi[i] * pri[j];
                break;
            }
            miu[i * pri[j]] = -miu[i];
            phi[i * pri[j]] = phi[i] * (pri[j] - 1);
        }
    }
    duke(i,2,N)
    {
        miu[i] += miu[i - 1];
        phi[i] += phi[i - 1];
    }
}
int t;
ll phis(int n)
{
    if(n <= N)
    {
        return phi[n];
    }
    if(ansphi.count(n)) return ansphi[n];
    ll ans = (1LL * n * (n + 1)) >> 1;
    for(int l = 2,r;l <= n;l = r + 1)
    {
        r = n / (n / l);
        ans -= (r - l + 1) * phis(n / l);
    }
    ansphi[n] = ans;
    return ans;
}
ll mius(int n)
{
    if(n <= N)
    {
        return miu[n];
    }
    if(ansmiu.count(n)) return ansmiu[n];
    ll ans = 1;
    for(int l = 2,r;l <= n;l = r + 1)
    {
        r = n / (n / l);
        ans -= (r - l + 1) * mius(n / l);
    }
    ansmiu[n] = ans;
    return ans;
}
int main()
{
    init();
    read(t);
    while(t--)
    {
        int n;
        read(n);
        printf("%lld %lld\n",phis(n),mius(n));
    }
    return 0;
}

 

posted @ 2019-01-16 09:37  DukeLv  阅读(151)  评论(0编辑  收藏  举报