[HNOI2011]数学作业 分段矩阵乘法

给n,问123……n这个数字串模m的数值,n<=1e18

对于0-9,10-99,这些数字之间都满足f(n)=f(n-1)*10^c,c定值

这每一段都可以做矩阵快速幂 ,存一下[f(n),n,1]就行

#include<bits/stdc++.h>
#include<stdio.h>
#include<algorithm>
#include<queue>
#include<string.h>
#include<iostream>
#include<math.h>
#include<set>
#include<map>
#include<vector>
#include<iomanip>
using namespace std;
#define ll long long
#define ull unsigned long long
#define pb push_back
#define FOR(a) for(int i=1;i<=a;i++)
const int inf=0x3f3f3f3f;
const ll Linf=9e18;
const int maxn=1e5+7; 
//const ll mod=100003;
const double eps=1e-6;
ll mod;

struct mat{
	ll a[4][4];
	int n,m;
	mat(){memset(a,0,sizeof a);n=0;m=0;}
	mat(int x,int y){memset(a,0,sizeof a);n=x;m=y;}
	mat operator* (const mat &rhs)const{
		mat ans;
		ans.n=n;ans.m=rhs.m;
		for(int i=1;i<=n;i++){
			for(int j=1;j<=rhs.m;j++){
				for(int k=1;k<=m;k++){
					ans.a[i][j]=(ans.a[i][j]+a[i][k]*rhs.a[k][j])%mod;
				}
			}
		}
		return ans;
	}
	mat operator^ (ll rhs)const{
		mat ans(n,n),b=*this;
		for(int i=1;i<=n;i++)ans.a[i][i]=1;
		for(;rhs;rhs>>=1,b=b*b)
			if(rhs&1)ans=ans*b;
		return ans;
	}

};

int main(){
	ll n,c;
	mat ans(1,3),b(3,3);
	scanf("%lld%lld",&n,&mod);
	ans.a[1][3]=1;
	for(int i=1;i<=3;i++){
		for(int j=1;j<=i;j++){
			b.a[i][j]=1;
		}
	}
	for(ll i=10;;i*=10){
		b.a[1][1]=i%mod;
		if(i<=n)c=i/10*9;
		else c=n-i/10+1;
		ans=ans*(b^c);
		if(i>n)break;
	}
	printf("%lld\n",ans.a[1][1]);
	return 0;
}



posted @ 2017-09-08 21:03  Drenight  阅读(151)  评论(0编辑  收藏  举报