Celery
Celery
一 、什么是Clelery
Celery是一个简单、灵活且可靠的,处理大量消息的分布式系统专注于实时处理的异步任务队列同时也支持任务调度
1. Celery架构
Celery
的架构由三部分组成,消息中间件(message broker),任务执行单元(worker)和任务执行结果存储(task result store)组成。
1.2 消息中间件
Celery
本身不提供消息服务,但是可以方便的和第三方提供的消息中间件集成。包括,RabbitMQ
, Redis
等等
1.3 任务执行单元
Worker
是Celery
提供的任务执行的单元,worker
并发的运行在分布式的系统节点中。
1.4 任务结果存储
Task result store
用来存储Worker
执行的任务的结果,Celery
支持以不同方式存储任务的结果,包括AMQP
, redis
等
1.5版本支持情况
Celery version 4.0 runs on
Python ❨2.7, 3.4, 3.5❩
PyPy ❨5.4, 5.5❩
This is the last version to support Python 2.7, and from the next version (Celery 5.x) Python 3.5 or newer is required.
If you’re running an older version of Python, you need to be running an older version of Celery:
Python 2.6: Celery series 3.1 or earlier.
Python 2.5: Celery series 3.0 or earlier.
Python 2.4 was Celery series 2.2 or earlier.
Celery is a project with minimal funding, so we don’t support Microsoft Windows. Please don’t open any issues related to that platform.
二 、使用场景
异步任务:将耗时操作任务提交给Celery
去异步执行,比如发送短信/邮件、消息推送、音视频处理等等
定时任务:定时执行某件事情,比如每天数据统计
三 、Celery的安装配置
pip install celery
消息中间件:RabbitMQ / Redis
app=Celery
(任务名
,backend='xxx',broker='xxx'
)
四 、Celery执行异步任务
4.1 基本使用
创建项目celerytest
创建py
文件:celery_app_task.py
import celery
import time
# broker='redis://127.0.0.1:6379/2' 不加密码
backend='redis://:123456@127.0.0.1:6379/1'
broker='redis://:123456@127.0.0.1:6379/2'
cel=celery.Celery('test',backend=backend,broker=broker)
@cel.task
def add(x,y):
return x+y
创建py
文件:add_task.py
添加任务
from celery_app_task import add
result = add.delay(4,5)
print(result.id)
创建py
文件:run.py
,执行任务,或者使用命令执行:celery worker -A celery_app_task -l info
注:windows
下:celery worker -A celery_app_task -l info -P eventlet
from celery_app_task import cel
if __name__ == '__main__':
cel.worker_main()
# cel.worker_main(argv=['--loglevel=info')
创建py文件:result.py
,查看任务执行结果
from celery.result import AsyncResult
from celery_app_task import cel
async = AsyncResult(id="e919d97d-2938-4d0f-9265-fd8237dc2aa3", app=cel)
if async.successful():
result = async.get()
print(result)
# result.forget() # 将结果删除
elif async.failed():
print('执行失败')
elif async.status == 'PENDING':
print('任务等待中被执行')
elif async.status == 'RETRY':
print('任务异常后正在重试')
elif async.status == 'STARTED':
print('任务已经开始被执行')
执行add_task.py
,添加任务,并获取任务ID
执行run.py
,或者执行命令:celery worker -A celery_app_task -l info
执行result.py
,检查任务状态并获取结果
4.2 多任务结构
pro_cel
├── celery_task # celery相关文件夹
│ ├── celery.py # celery连接和配置相关文件,必须叫这个名字
│ └── tasks1.py # 所有任务函数
│ └── tasks2.py # 所有任务函数
├── check_result.py # 检查结果
└── send_task.py # 触发任务
celery.py
from celery import Celery
cel = Celery('celery_demo',
broker='redis://127.0.0.1:6379/1',
backend='redis://127.0.0.1:6379/2',
# 包含以下两个任务文件,去相应的py文件中找任务,对多个任务做分类
include=['celery_task.tasks1',
'celery_task.tasks2'
])
# 时区
cel.conf.timezone = 'Asia/Shanghai'
# 是否使用UTC
cel.conf.enable_utc = False
tasks1.py
import time
from celery_task.celery import cel
@cel.task
def test_celery(res):
time.sleep(5)
return "test_celery任务结果:%s"%res
tasks2.py
import time
from celery_task.celery import cel
@cel.task
def test_celery2(res):
time.sleep(5)
return "test_celery2任务结果:%s"%res
check_result.py
from celery.result import AsyncResult
from celery_task.celery import cel
async = AsyncResult(id="08eb2778-24e1-44e4-a54b-56990b3519ef", app=cel)
if async.successful():
result = async.get()
print(result)
# result.forget() # 将结果删除,执行完成,结果不会自动删除
# async.revoke(terminate=True) # 无论现在是什么时候,都要终止
# async.revoke(terminate=False) # 如果任务还没有开始执行呢,那么就可以终止。
elif async.failed():
print('执行失败')
elif async.status == 'PENDING':
print('任务等待中被执行')
elif async.status == 'RETRY':
print('任务异常后正在重试')
elif async.status == 'STARTED':
print('任务已经开始被执行')
send_task.py
from celery_task.tasks1 import test_celery
from celery_task.tasks2 import test_celery2
# 立即告知celery去执行test_celery任务,并传入一个参数
result = test_celery.delay('第一个的执行')
print(result.id)
result = test_celery2.delay('第二个的执行')
print(result.id)
添加任务(执行send_task.py
),开启work
:celery worker -A celery_task -l info -P eventlet
,检查任务执行结果(执行check_result.py
)
五 、Celery执行定时任务
5.1 设定时间让celery
执行一个任务
add_task.py
from celery_app_task import add
from datetime import datetime
# 方式一
# v1 = datetime(2019, 2, 13, 18, 19, 56)
# print(v1)
# v2 = datetime.utcfromtimestamp(v1.timestamp())
# print(v2)
# result = add.apply_async(args=[1, 3], eta=v2)
# print(result.id)
# 方式二
ctime = datetime.now()
# 默认用utc时间
utc_ctime = datetime.utcfromtimestamp(ctime.timestamp())
from datetime import timedelta
time_delay = timedelta(seconds=10)
task_time = utc_ctime + time_delay
# 使用apply_async并设定时间
result = add.apply_async(args=[4, 3], eta=task_time)
print(result.id)
5.2 类似于contab
的定时任务
多任务结构中celery.py
修改如下
from datetime import timedelta
from celery import Celery
from celery.schedules import crontab
cel = Celery('tasks', broker='redis://127.0.0.1:6379/1', backend='redis://127.0.0.1:6379/2', include=[
'celery_task.tasks1',
'celery_task.tasks2',
])
cel.conf.timezone = 'Asia/Shanghai'
cel.conf.enable_utc = False
cel.conf.beat_schedule = {
# 名字随意命名
'add-every-10-seconds': {
# 执行tasks1下的test_celery函数
'task': 'celery_task.tasks1.test_celery',
# 每隔2秒执行一次
# 'schedule': 1.0,
# 'schedule': crontab(minute="*/1"),
'schedule': timedelta(seconds=2),
# 传递参数
'args': ('test',)
},
# 'add-every-12-seconds': {
# 'task': 'celery_task.tasks1.test_celery',
# 每年4月11号,8点42分执行
# 'schedule': crontab(minute=42, hour=8, day_of_month=11, month_of_year=4),
# 'schedule': crontab(minute=42, hour=8, day_of_month=11, month_of_year=4),
# 'args': (16, 16)
# },
}
启动一个beat
:celery beat -A celery_task -l info
启动work
执行:celery worker -A celery_task -l info -P eventlet
六 、Django中使用Celery
在项目目录下创建celeryconfig.py
import djcelery
djcelery.setup_loader()
CELERY_IMPORTS=(
'app01.tasks',
)
#有些情况可以防止死锁
CELERYD_FORCE_EXECV=True
# 设置并发worker数量
CELERYD_CONCURRENCY=4
#允许重试
CELERY_ACKS_LATE=True
# 每个worker最多执行100个任务被销毁,可以防止内存泄漏
CELERYD_MAX_TASKS_PER_CHILD=100
# 超时时间
CELERYD_TASK_TIME_LIMIT=12*30
在app01
目录下创建tasks.py
from celery import task
@task
def add(a,b):
with open('a.text', 'a', encoding='utf-8') as f:
f.write('a')
print(a+b)
视图函数views.py
from django.shortcuts import render,HttpResponse
from app01.tasks import add
from datetime import datetime
def test(request):
# result=add.delay(2,3)
ctime = datetime.now()
# 默认用utc时间
utc_ctime = datetime.utcfromtimestamp(ctime.timestamp())
from datetime import timedelta
time_delay = timedelta(seconds=5)
task_time = utc_ctime + time_delay
result = add.apply_async(args=[4, 3], eta=task_time)
print(result.id)
return HttpResponse('ok')
settings.py
INSTALLED_APPS = [
...
'djcelery',
'app01'
]
...
from djagocele import celeryconfig
BROKER_BACKEND='redis'
BOOKER_URL='redis://127.0.0.1:6379/1'
CELERY_RESULT_BACKEND='redis://127.0.0.1:6379/2'
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 使用C#创建一个MCP客户端
· ollama系列1:轻松3步本地部署deepseek,普通电脑可用
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· 按钮权限的设计及实现