pandas模块

pandas模块

pandas官方文档链接
pandas基于numpy,可以看成是处理文本或表格数据,pandas中主要有Series数据结构,类似于numpy的一维数组,DataFrame类似于多维表格数据结构
pandas是Python数据分析的核心模块,主要有五大功能

  1. 支持文件存取操作,支持数据库(sql)、html、json、pickle、csv、Excel、sas、hdf等
  2. 支持增删改查、切片、高阶函数、分组聚合等操作,以及dict和list互相转换
  3. 支持多表拼接合并操作
  4. 支持简单绘图操作
  5. 支持简单统计分析操作
import pandas as pd
import numpy as np
# Series
import numpy as np
import pandas as pd

arr = np.array([1,2,3,4,np.nan])
print(arr)
[ 1.  2.  3.  4. nan]
s = pd.Series(arr)
print(s)
0    1.0
1    2.0
2    3.0
3    4.0
4    NaN
dtype: float64
# DataFrame
dates = pd.date_range('20000202',periods = 6)
print(dates)
DatetimeIndex(['2000-02-02', '2000-02-03', '2000-02-04', '2000-02-05',
               '2000-02-06', '2000-02-07'],
              dtype='datetime64[ns]', freq='D')
np.random.seed(1)
arr = 10*np.random.randn(6,4)
print(arr)
[[ 16.24345364  -6.11756414  -5.28171752 -10.72968622]
 [  8.65407629 -23.01538697  17.44811764  -7.61206901]
 [  3.19039096  -2.49370375  14.62107937 -20.60140709]
 [ -3.22417204  -3.84054355  11.33769442 -10.99891267]
 [ -1.72428208  -8.77858418   0.42213747   5.82815214]
 [-11.00619177  11.4472371    9.01590721   5.02494339]]
df = pd.DataFrame(arr,index=dates, columns=['c1','c2','c3','c4'])
df
c1 c2 c3 c4
2000-02-02 16.243454 -6.117564 -5.281718 -10.729686
2000-02-03 8.654076 -23.015387 17.448118 -7.612069
2000-02-04 3.190391 -2.493704 14.621079 -20.601407
2000-02-05 -3.224172 -3.840544 11.337694 -10.998913
2000-02-06 -1.724282 -8.778584 0.422137 5.828152
2000-02-07 -11.006192 11.447237 9.015907 5.024943
# 使用pandas读取字典形式的数据
df2=pd.DataFrame({'a':1,'b':[2,3],'c':np.arange(2),'d':'hello'})
df2

a b c d
0 1 2 0 hello
1 1 3 1 hello

DataFrame属性

属性 详解
dtype 查看数据类型
index 查看行序列或者索引
columns 查看各列的标签
values 查看数据框内的数据,也即不含表头索引的数据
describe 查看数据每一列的极值,均值,中位数,只可用于数值型数据
transpose 转置,也可用T来操作
sort_index 排序,可按行或列index排序输出
sort_values 按数据值来排序
# 查看数据类型
print(df2.dtypes)
a     int64
b     int64
c     int32
d    object
dtype: object
df.index

DatetimeIndex(['2000-02-02', '2000-02-03', '2000-02-04', '2000-02-05',
               '2000-02-06', '2000-02-07'],
              dtype='datetime64[ns]', freq='D')
df.columns
Index(['c1', 'c2', 'c3', 'c4'], dtype='object')
df.values
array([[ 16.24345364,  -6.11756414,  -5.28171752, -10.72968622],
       [  8.65407629, -23.01538697,  17.44811764,  -7.61206901],
       [  3.19039096,  -2.49370375,  14.62107937, -20.60140709],
       [ -3.22417204,  -3.84054355,  11.33769442, -10.99891267],
       [ -1.72428208,  -8.77858418,   0.42213747,   5.82815214],
       [-11.00619177,  11.4472371 ,   9.01590721,   5.02494339]])
df.describe()
c1 c2 c3 c4
count 6.000000 6.000000 6.000000 6.000000
mean 2.022213 -5.466424 7.927203 -6.514830
std 9.580084 11.107772 8.707171 10.227641
min -11.006192 -23.015387 -5.281718 -20.601407
25% -2.849200 -8.113329 2.570580 -10.931606
50% 0.733054 -4.979054 10.176801 -9.170878
75% 7.288155 -2.830414 13.800233 1.865690
max 16.243454 11.447237 17.448118 5.828152
df.T
2000-02-02 00:00:00 2000-02-03 00:00:00 2000-02-04 00:00:00 2000-02-05 00:00:00 2000-02-06 00:00:00 2000-02-07 00:00:00
c1 16.243454 8.654076 3.190391 -3.224172 -1.724282 -11.006192
c2 -6.117564 -23.015387 -2.493704 -3.840544 -8.778584 11.447237
c3 -5.281718 17.448118 14.621079 11.337694 0.422137 9.015907
c4 -10.729686 -7.612069 -20.601407 -10.998913 5.828152 5.024943
# 按行标签从大到小排序
df.sort_index(axis=0)
c1 c2 c3 c4
2000-02-02 16.243454 -6.117564 -5.281718 -10.729686
2000-02-03 8.654076 -23.015387 17.448118 -7.612069
2000-02-04 3.190391 -2.493704 14.621079 -20.601407
2000-02-05 -3.224172 -3.840544 11.337694 -10.998913
2000-02-06 -1.724282 -8.778584 0.422137 5.828152
2000-02-07 -11.006192 11.447237 9.015907 5.024943
# 按列标签从大到小排列
df2.sort_index(axis =0)
a b c d
0 1 2 0 hello
1 1 3 1 hello
df2.sort_values(by='a')
a b c d
0 1 2 0 hello
1 1 3 1 hello

DataFrame取值

df

5.1 Unnamed: 1 1.4 0.2
0 4.9 3.0 1.4 0.2
1 4.7 3.2 NaN 0.2
2 7.0 3.2 4.7 1.4
3 6.4 3.2 4.5 1.5
4 6.9 3.1 4.9 NaN
5 NaN NaN NaN NaN
df['c3']
2000-02-02    -5.281718
2000-02-03    17.448118
2000-02-04    14.621079
2000-02-05    11.337694
2000-02-06     0.422137
2000-02-07     9.015907
Freq: D, Name: c3, dtype: float64
df[0:3]
c1 c2 c3 c4
2000-02-02 16.243454 -6.117564 -5.281718 -10.729686
2000-02-03 8.654076 -23.015387 17.448118 -7.612069
2000-02-04 3.190391 -2.493704 14.621079 -20.601407
# 通过自定义标签来选择数据
df.loc['2000-02-02':'2000-02-04']
c1 c2 c3 c4
2000-02-02 16.243454 -6.117564 -5.281718 -10.729686
2000-02-03 8.654076 -23.015387 17.448118 -7.612069
2000-02-04 3.190391 -2.493704 14.621079 -20.601407
df.values
array([[ 16.24345364,  -6.11756414,  -5.28171752, -10.72968622],
       [  8.65407629, -23.01538697,  17.44811764,  -7.61206901],
       [  3.19039096,  -2.49370375,  14.62107937, -20.60140709],
       [ -3.22417204,  -3.84054355,  11.33769442, -10.99891267],
       [ -1.72428208,  -8.77858418,   0.42213747,   5.82815214],
       [-11.00619177,  11.4472371 ,   9.01590721,   5.02494339]])
df.iloc[2,1]
-2.493703754774101
# 通过行索引选择数据
print(df.iloc[2,1])
-2.493703754774101
df.iloc[1:4,2:4]  # 行怎么取  列怎么取
c3 c4
2000-02-03 17.448118 -7.612069
2000-02-04 14.621079 -20.601407
2000-02-05 11.337694 -10.998913
# 使用逻辑替换
df[df['c1']>0]
c1 c2 c3 c4
2000-02-02 16.243454 -6.117564 -5.281718 -10.729686
2000-02-03 8.654076 -23.015387 17.448118 -7.612069
2000-02-04 3.190391 -2.493704 14.621079 -20.601407
# DataFrame值替换
df.iloc[0:3,0:2]
c1 c2
2000-02-02 16.243454 -6.117564
2000-02-03 8.654076 -23.015387
2000-02-04 3.190391 -2.493704
df[df['c1']>0] =100
df  #  原地修改
c1 c2 c3 c4
2000-02-02 100.000000 100.000000 100.000000 100.000000
2000-02-03 100.000000 100.000000 100.000000 100.000000
2000-02-04 100.000000 100.000000 100.000000 100.000000
2000-02-05 -3.224172 -3.840544 11.337694 -10.998913
2000-02-06 -1.724282 -8.778584 0.422137 5.828152
2000-02-07 -11.006192 11.447237 9.015907 5.024943
df
c1 c2 c3 c4
2000-02-02 100.000000 100.000000 100.000000 100.000000
2000-02-03 100.000000 100.000000 100.000000 100.000000
2000-02-04 100.000000 100.000000 100.000000 100.000000
2000-02-05 -3.224172 -3.840544 11.337694 -10.998913
2000-02-06 -1.724282 -8.778584 0.422137 5.828152
2000-02-07 -11.006192 11.447237 9.015907 5.024943

读取CSV文件

import pandas as pd
from io import StringIO
test_data = '''
5.1,,1.4,0.2
4.9,3.0,1.4,0.2
4.7,3.2,,0.2
7.0,3.2,4.7,1.4
6.4,3.2,4.5,1.5
6.9,3.1,4.9,
,,,
'''

# df = pd.read_csv('C:/Users/test_data.csv')
test_data = StringIO(test_data)
df = pd.read_csv(test_data)
df = pd.read_excel(test_data)
df.columns = ['c1', 'c2', 'c3', 'c4']
df
# 通过在isnull()方法后使用sum()方法即可获得该数据集某个特征含有多少个缺失值
print(df.isnull().sum())
df
# axis = 0 删除有NaN值得行
df dropa(axis=1)

# 删除axis = 1 删除有NaN值的列
df.dropa(axis = 1)

# 删除全为NaN值的行或列
df.dropa(how = all)

导入导出数据

df = pd.read_csv(filename)读取文件, 使用df.to_csv(filename)来保存文件

合并数据

df1 = pd.DataFrame(np.zeros(3,4))
df1
df2 = pd.DataFrame(np.ones(3,4))
df2
posted @ 2019-06-19 15:27  つつつつつつ  阅读(177)  评论(0编辑  收藏  举报