SQL窗口函数的移动求和/平均,及相应的Leecode题目

原文链接:https://blog.csdn.net/weixin_45638528/article/details/130229603

移动求和的窗口函数——连续n个数据求和

1
sum(字段1) over (partition by 字段2 order by 字段3 rows n preceding)

注意:1、rows n preceding: 这是指在当前行之前n行的数据;

           2、order by 为必填字段


LEECODE 1321 餐馆营业额变化增长
表: Customer

+---------------+---------+
| Column Name | Type |
+---------------+---------+
| customer_id | int |
| name | varchar |
| visited_on | date |
| amount | int |
+---------------+---------+
(customer_id, visited_on) 是该表的主键。
该表包含一家餐馆的顾客交易数据。
visited_on 表示 (customer_id) 的顾客在 visited_on 那天访问了餐馆。
amount 是一个顾客某一天的消费总额。

你是餐馆的老板,现在你想分析一下可能的营业额变化增长(每天至少有一位顾客)。

写一条 SQL 查询计算以 7 天(某日期 + 该日期前的 6 天)为一个时间段的顾客消费平均值。average_amount 要 保留两位小数。

查询结果按 visited_on 排序。

查询结果格式的例子如下。

示例 1:

输入:
Customer 表:
+-------------+--------------+--------------+-------------+
| customer_id | name | visited_on | amount |
+-------------+--------------+--------------+-------------+
| 1 | Jhon | 2019-01-01 | 100 |
| 2 | Daniel | 2019-01-02 | 110 |
| 3 | Jade | 2019-01-03 | 120 |
| 4 | Khaled | 2019-01-04 | 130 |
| 5 | Winston | 2019-01-05 | 110 |
| 6 | Elvis | 2019-01-06 | 140 |
| 7 | Anna | 2019-01-07 | 150 |
| 8 | Maria | 2019-01-08 | 80 |
| 9 | Jaze | 2019-01-09 | 110 |
| 1 | Jhon | 2019-01-10 | 130 |
| 3 | Jade | 2019-01-10 | 150 |
+-------------+--------------+--------------+-------------+
输出:
+--------------+--------------+----------------+
| visited_on | amount | average_amount |
+--------------+--------------+----------------+
| 2019-01-07 | 860 | 122.86 |
| 2019-01-08 | 840 | 120 |
| 2019-01-09 | 840 | 120 |
| 2019-01-10 | 1000 | 142.86 |
+--------------+--------------+----------------+

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/restaurant-growth
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

解答
1、首先按visited_on分组,先计算每个日期的总的amount

1
2
3
select visited_on, sum(amount) as amount
from Customer
group by visited_on;


2、对上面得出的表计算移动平均、移动求和

1
2
3
4
5
6
7
select visited_on,
sum(amount) over (order by visited_on rows 6 preceding) as amount,
avg(amount) over (order by visited_on rows 6 preceding) as average_amount
from (
select visited_on,sum(amount) as amount
from Customer
group by visited_on) as a;

 3、因为题目计算的是以7天为一个时间段的数据,上表我们得出的结果包含了不足7天的数据(如2019-01-01至2019-01-06),因此要进行筛选,筛选思路可以是 每个日期与列表最小间隔日期为6天

 

1
2
3
4
5
6
7
8
9
10
11
12
select visited_on,amount,round(average_amount,2) as average_amount
from (
select visited_on,
sum(amount) over (order by visited_on rows 6 preceding) as amount,
avg(amount/1.0) over (order by visited_on rows 6 preceding) as average_amount
from (
select visited_on,sum(amount) as amount
from Customer
group by visited_on
) as a
) as b
where datediff(day, (select min(visited_on) from Customer), visited_on)>=6;

  

原文链接:https://blog.csdn.net/weixin_45638528/article/details/130229603

posted @   yinghualeihenmei  阅读(140)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· Obsidian + DeepSeek:免费 AI 助力你的知识管理,让你的笔记飞起来!
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
历史上的今天:
2023-04-07 IIS问题:无法识别的属性“targetFramework”。请注意属性名称区分大小写
2023-04-07 Vs2015引用项目时一直有黄色的三角形感叹号
2023-04-07 IIS 配置错误定义了重复的“system.web.extensions/scripting/scriptResourceHandler” 解决办法
点击右上角即可分享
微信分享提示