算法中递归的执行过程
原文链接:https://blog.csdn.net/weixin_38754799/article/details/120681819
我们来看一下 函数sum(n=5)的递归执行过程,如下:
计算sum(5)时,先sum(5)入栈,然后原问题sum(5)拆分为子问题sum(4),再入栈,直到终止条件sum(n=1)=1,就开始出栈。
sum(1)出栈后,sum(2)开始出栈,接着sum(3)。
最后呢,sum(1)就是后进先出,sum(5)是先进后出,因此递归过程可以理解为栈出入过程。
实例分析
我对递归的理解是先往下一层层传递,当碰到终止条件的时候会反弹,最终会反弹到调用处。下面我们就以5个最常见的示例来分析下
1,阶乘
我们先来看一个最简单的递归调用-阶乘,代码如下
1 2 3 4 5 | public int recursion( int n) { if (n == 1) return 1; return n * recursion(n - 1); } |
这个递归在熟悉不过了,第2-3行是终止条件,第4行是调用自己。我们就用n等于5的时候来画个图看一下递归究竟是怎么调用的:
这种递归还是很简单的,我们求f(5)的时候,只需要求出f(4)即可,如果求f(4)我们要求出f(3)……,一层一层的调用,当n=1的时候,我们直接返回1,然后再一层一层的返回,直到返回f(5)为止。
递归的目的是把一个大的问题细分为更小的子问题,我们只需要知道递归函数的功能即可,不要把递归一层一层的拆开来想,如果同时调用多次的话这样你很可能会陷入循环而出不来。比如上面的题中要求f(5),我们只需要计算f(4)即可,即f(5)=5*f(4);至于f(4)是怎么计算的,我们就不要管了。因为我们知道f(n)中的n可以代表任何正整数,我们只需要传入4就可以计算f(4)。
2、二叉树的遍历
再来看最后一个常见的示例就是二叉树的遍历,分为前序遍历、中序遍历、后序遍历,代码其实都差不多,这里只列出其中一个遍历。
前序遍历:
终止条件是node等于空,逻辑处理这块直接打印当前节点的值即可,递归调用是先打印左子树在打印右子树,我们来看下
1 2 3 4 5 6 7 | public static void preOrder(TreeNode node) { if (node == null ) return ; System. out .printf(node.val + "" ); preOrder(node.left); preOrder(node.right); } |
3、翻转一棵二叉树
[1.定义函数功能]
函数功能(即这个递归原问题是),给出一颗树,然后翻转它。
[2.寻找递归终止条件]
这棵树什么时候不用翻转呢?当然是当前节点为null或者当前节点为叶子节点的时候啦。因此,加上终止条件就是:
1 2 3 4 5 6 | //翻转一颗二叉树 public TreeNode invertTree(TreeNode root) { if (root== null || (root.left == null && root.right == null )){ return root; } } |
[3.递推函数的等价关系式]
首先,你要翻转根节点为4的树,就需要翻转它的左子树(根节点为2)和右子树(根节点为7)。
然后呢,根节点为2的树,不是叶子节点,你需要继续翻转它的左子树(根节点为1)和右子树(根节点为3)。因为节点1和3都是叶子节点了,所以就返回啦。
同理,根节点为7的树,也不是叶子节点,你需要翻转它的左子树(根节点为6)和右子树(根节点为9)。因为节点6和9都是叶子节点了,所以也返回啦。
左子树(根节点为2)和右子树(根节点为7)都被翻转完后,这几个步骤就「归来」,即递归的过程,翻转树的任务就完成了。
显然,「递推关系式」就是:
1 | invertTree(root)= invertTree(root.left) + invertTree(root.right); |
于是,很容易可以得出以下代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | class Solution { public TreeNode invertTree(TreeNode root) { if (root== null || (root.left == null && root.right == null )){ return root; } //翻转左子树 TreeNode left = invertTree(root.left); //翻转右子树 TreeNode right= invertTree(root.right); //左右子树交换位置~ root.left = right; root.right = left; return root; } } |
递归存在的问题
递归调用层级太多,导致栈溢出问题
递归重复计算,导致效率低下
我们再来看一道经典的青蛙跳阶问题:
一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。
绝大多数读者朋友,很容易就想到以下递归代码去解决:
1 2 3 4 5 6 7 8 9 10 11 | class Solution { public int numWays( int n) { if (n == 0){ return 1; } if (n <= 2){ return n; } return numWays(n-1) + numWays(n-2); } } |
但是呢,去leetcode提交一下,就有问题啦,超出时间限制了
为什么超时了呢?递归耗时在哪里呢?先画出「递归树」看看:
要计算原问题 f(10),就需要先计算出子问题 f(9) 和 f(8)
然后要计算 f(9),又要先算出子问题 f(8) 和 f(7),以此类推。
一直到 f(2) 和 f(1),递归树才终止。
我们先来看看这个递归的时间复杂度吧,递归时间复杂度 = 解决一个子问题时间*子问题个数
一个子问题时间 = f(n-1)+f(n-2),也就是一个加法的操作,所以复杂度是 「O(1)」;
问题个数 = 递归树节点的总数,递归树的总结点 = 2^n-1,所以是复杂度「O(2^n)」。
因此,青蛙跳阶,递归解法的时间复杂度 = O(1) * O(2^n) = O(2^n),就是指数级别的,爆炸增长的,如果n比较大的话,超时很正常的了。
回过头来,你仔细观察这颗递归树,你会发现存在大量重复计算,比如f(8)被计算了两次,f(7)被重复计算了3次...所以这个递归算法低效的原因,就是存在大量的重复计算!
怎么解决这个问题呢?
既然存在大量重复计算,那么我们可以先把计算好的答案存下来,造一个备忘录,等到下次需要的话,先去「备忘录」查一下,如果有,就直接取就好了,备忘录没有才再计算,那就可以省去重新重复计算的耗时啦!这就是带备忘录的解法.
一般使用一个数组或者一个哈希map充当这个「备忘录」。
假设f(10)求解加上「备忘录」,我们再来画一下递归树:
「第一步」,f(10)= f(9) + f(8),f(9) 和f(8)都需要计算出来,然后再加到备忘录中,如下:
「第二步」 , f(9) = f(8)+ f(7),f(8)= f(7)+ f(6), 因为 f(8) 已经在备忘录中啦,所以可以省掉,f(7),f(6)都需要计算出来,加到备忘录中~
「第三步」 ,f(8) = f(7)+ f(6),发现f(8),f(7),f(6)全部都在备忘录上了,所以都可以剪掉。
所以呢,用了备忘录递归算法,递归树变成光秃秃的树干,如下:
带「备忘录」的递归算法,子问题个数=树节点数=n,解决一个子问题还是O(1),所以「带「备忘录」的递归算法的时间复杂度是O(n)」。接下来呢,我们用带「备忘录」的递归算法去撸代码,解决这个青蛙跳阶问题的超时问题,代码如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | public class Solution { //使用哈希map,充当备忘录的作用 Map<Integer, Integer> tempMap = new HashMap(); public int numWays( int n) { // n = 0 也算1种 if (n == 0) { return 1; } if (n <= 2) { return n; } //先判断有没计算过,即看看备忘录有没有 if (tempMap.containsKey(n)) { //备忘录有,即计算过,直接返回 return tempMap. get (n); } else { // 备忘录没有,即没有计算过,执行递归计算,并且把结果保存到备忘录map中,对1000000007取余(这个是leetcode题目规定的) tempMap.put(n, (numWays(n - 1) + numWays(n - 2)) % 1000000007); return tempMap. get (n); } } } |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· Obsidian + DeepSeek:免费 AI 助力你的知识管理,让你的笔记飞起来!
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
2023-03-14 使用 pdf.js 在网页中加载 pdf 文件