python 去停用词

Try caching the stopwords object, as shown below. Constructing this each time you call the function seems to be the bottleneck.

    from nltk.corpus import stopwords

    cachedStopWords = stopwords.words("english")

    def testFuncOld():
        text = 'hello bye the the hi'
        text = ' '.join([word for word in text.split() if word not in stopwords.words("english")])

    def testFuncNew():
        text = 'hello bye the the hi'
        text = ' '.join([word for word in text.split() if word not in cachedStopWords])

    if __name__ == "__main__":
        for i in xrange(10000):
            testFuncOld()
            testFuncNew()

I ran this through the profiler: python -m cProfile -s cumulative test.py. The relevant lines are posted below.

nCalls Cumulative Time

10000 7.723 words.py:7(testFuncOld)

10000 0.140 words.py:11(testFuncNew)

So, caching the stopwords instance gives a ~70x speedup.

posted @ 2017-05-25 09:20  Donal  阅读(5617)  评论(0编辑  收藏  举报