高中数学的尾巴 | 排列组合、概率、期望
Main
- 排列组合恒等式
- \(k\dbinom{n}{k}=n\dbinom{n-1}{k-1}\) 用于处理 \(k\dbinom nk\)
- \(\dbinom{n+1}{k+1}=\sum\limits_{i=k}^n\dbinom{i}{k}\)
- \(\dbinom nt\dbinom tk=\dbinom nk\dbinom{n-k}{t-k}\) 组合意义的问题:处理多重选择时选择顺序的问题
- \(f(x)=\sum\limits_{i=0}^na_ix^i\to f'(x)=\sum\limits_{i=0}^nia_ix^{i-1}\) 用于求 \(\sum ia_i\)
- 对于随机变量 \(x\in\{(x_i, p_i)_{i=1}^n\}\),定义期望 \(E(X)=\sum\limits_{i=1}^n x_ip_i\),方差 \(D(X)=\sum\limits_{i=1}^n[x_i-E(X)]^2p_i\)
- 二项分布:\(P(X=i)=\dbinom{n}{i}\cdot p^i(1-p)^{n-i}\)
- 期望:\(E(X)=\sum\limits_{i=0}^ni\dbinom{n}{i}\cdot p^i(1-p)^{n-i}=np\)
- 方差:\(D(X)=np(1-p)\)
- \(D(X)=E(X^2)-E^2(X)\)
- 期望的线性性:\(E(X+Y)=E(X)+E(Y)\)
- \(D(X+Y)=D(X)+D(Y)\)
- \(\sum\limits_{i=1}^ni\dbinom{n}{i}=n\cdot2^{n-1}\)
- \(S^2=\sum\dfrac nN[s_i^2+(\overline{x_i}-\omega)^2]\)
超几何分布:\(X\sim H(n, N, M)\)
- \(p=\dfrac MN\)
- \(E(X)=np\)
- \(D(X)=np(1-p)\cdot\dfrac{N-n}{N-1}\)(?)
- \(X\sim N(\mu, \sigma^2)\)
- \(y=\dfrac{1}{\sigma\sqrt{2\pi}}\cdot\exp[-\dfrac{(x-\mu)^2}{2\sigma^2}]\)
- 无限递推型概率:在次数趋于无限时收敛为某定值。
- 动态规划——\(\boldsymbol{dynamic\ programming}\)