tensorflow项目构建流程
https://blog.csdn.net/hjimce/article/details/51899683
一、构建路线
个人感觉对于任何一个深度学习库,如mxnet、tensorflow、theano、caffe等,基本上我都采用同样的一个学习流程,大体流程如下:
(1)训练阶段:数据打包-》网络构建、训练-》模型保存-》可视化查看损失函数、验证精度
(2)测试阶段:模型加载-》测试图片读取-》预测显示结果
(3)移植阶段:量化、压缩加速-》微调-》C++移植打包-》上线
这边我就以tensorflow为例子,讲解整个流程的大体架构,完成一个深度学习项目所需要熟悉的过程代码。
二、训练、测试阶段
1、tensorflow打包数据
这一步对于tensorflow来说,也可以直接自己在线读取:.jpg图片、标签文件等,然后通过phaceholder变量,把数据送入网络中,进行计算。
不过这种效率比较低,对于大规模训练数据来说,我们需要一个比较高效的方式,tensorflow建议我们采用tfrecoder进行高效数据读取。学习tensorflow一定要学会tfrecoder文件写入、读取,具体示例代码如下:
-
#coding=utf-8
-
#tensorflow高效数据读取训练
-
import tensorflow as tf
-
import cv2
-
-
#把train.txt文件格式,每一行:图片路径名 类别标签
-
#奖数据打包,转换成tfrecords格式,以便后续高效读取
-
def encode_to_tfrecords(lable_file,data_root,new_name='data.tfrecords',resize=None):
-
writer=tf.python_io.TFRecordWriter(data_root+'/'+new_name)
-
num_example=0
-
with open(lable_file,'r') as f:
-
for l in f.readlines():
-
l=l.split()
-
image=cv2.imread(data_root+"/"+l[0])
-
if resize is not None:
-
image=cv2.resize(image,resize)#为了
-
height,width,nchannel=image.shape
-
-
label=int(l[1])
-
-
example=tf.train.Example(features=tf.train.Features(feature={
-
'height':tf.train.Feature(int64_list=tf.train.Int64List(value=[height])),
-
'width':tf.train.Feature(int64_list=tf.train.Int64List(value=[width])),
-
'nchannel':tf.train.Feature(int64_list=tf.train.Int64List(value=[nchannel])),
-
'image':tf.train.Feature(bytes_list=tf.train.BytesList(value=[image.tobytes()])),
-
'label':tf.train.Feature(int64_list=tf.train.Int64List(value=[label]))
-
}))
-
serialized=example.SerializeToString()
-
writer.write(serialized)
-
num_example+=1
-
print lable_file,"样本数据量:",num_example
-
writer.close()
-
#读取tfrecords文件
-
def decode_from_tfrecords(filename,num_epoch=None):
-
filename_queue=tf.train.string_input_producer([filename],num_epochs=num_epoch)#因为有的训练数据过于庞大,被分成了很多个文件,所以第一个参数就是文件列表名参数
-
reader=tf.TFRecordReader()
-
_,serialized=reader.read(filename_queue)
-
example=tf.parse_single_example(serialized,features={
-
'height':tf.FixedLenFeature([],tf.int64),
-
'width':tf.FixedLenFeature([],tf.int64),
-
'nchannel':tf.FixedLenFeature([],tf.int64),
-
'image':tf.FixedLenFeature([],tf.string),
-
'label':tf.FixedLenFeature([],tf.int64)
-
})
-
label=tf.cast(example['label'], tf.int32)
-
image=tf.decode_raw(example['image'],tf.uint8)
-
image=tf.reshape(image,tf.pack([
-
tf.cast(example['height'], tf.int32),
-
tf.cast(example['width'], tf.int32),
-
tf.cast(example['nchannel'], tf.int32)]))
-
#label=example['label']
-
return image,label
-
#根据队列流数据格式,解压出一张图片后,输入一张图片,对其做预处理、及样本随机扩充
-
def get_batch(image, label, batch_size,crop_size):
-
#数据扩充变换
-
distorted_image = tf.random_crop(image, [crop_size, crop_size, 3])#随机裁剪
-
distorted_image = tf.image.random_flip_up_down(distorted_image)#上下随机翻转
-
#distorted_image = tf.image.random_brightness(distorted_image,max_delta=63)#亮度变化
-
#distorted_image = tf.image.random_contrast(distorted_image,lower=0.2, upper=1.8)#对比度变化
-
-
#生成batch
-
#shuffle_batch的参数:capacity用于定义shuttle的范围,如果是对整个训练数据集,获取batch,那么capacity就应该够大
-
#保证数据打的足够乱
-
images, label_batch = tf.train.shuffle_batch([distorted_image, label],batch_size=batch_size,
-
num_threads=16,capacity=50000,min_after_dequeue=10000)
-
#images, label_batch=tf.train.batch([distorted_image, label],batch_size=batch_size)
-
-
-
-
# 调试显示
-
#tf.image_summary('images', images)
-
return images, tf.reshape(label_batch, [batch_size])
-
#这个是用于测试阶段,使用的get_batch函数
-
def get_test_batch(image, label, batch_size,crop_size):
-
#数据扩充变换
-
distorted_image=tf.image.central_crop(image,39./45.)
-
distorted_image = tf.random_crop(distorted_image, [crop_size, crop_size, 3])#随机裁剪
-
images, label_batch=tf.train.batch([distorted_image, label],batch_size=batch_size)
-
return images, tf.reshape(label_batch, [batch_size])
-
#测试上面的压缩、解压代码
-
def test():
-
encode_to_tfrecords("data/train.txt","data",(100,100))
-
image,label=decode_from_tfrecords('data/data.tfrecords')
-
batch_image,batch_label=get_batch(image,label,3)#batch 生成测试
-
init=tf.initialize_all_variables()
-
with tf.Session() as session:
-
session.run(init)
-
coord = tf.train.Coordinator()
-
threads = tf.train.start_queue_runners(coord=coord)
-
for l in range(100000):#每run一次,就会指向下一个样本,一直循环
-
#image_np,label_np=session.run([image,label])#每调用run一次,那么
-
'''cv2.imshow("temp",image_np)
-
cv2.waitKey()'''
-
#print label_np
-
#print image_np.shape
-
-
-
batch_image_np,batch_label_np=session.run([batch_image,batch_label])
-
print batch_image_np.shape
-
print batch_label_np.shape
-
-
-
-
coord.request_stop()#queue需要关闭,否则报错
-
coord.join(threads)
-
#test()
2、网络架构与训练
经过上面的数据格式处理,接着我们只要写一写网络结构、网络优化方法,把数据搞进网络中就可以了,具体示例代码如下:
-
#coding=utf-8
-
import tensorflow as tf
-
from data_encoder_decoeder import encode_to_tfrecords,decode_from_tfrecords,get_batch,get_test_batch
-
import cv2
-
import os
-
-
class network(object):
-
def __init__(self):
-
with tf.variable_scope("weights"):
-
self.weights={
-
#39*39*3->36*36*20->18*18*20
-
'conv1':tf.get_variable('conv1',[4,4,3,20],initializer=tf.contrib.layers.xavier_initializer_conv2d()),
-
#18*18*20->16*16*40->8*8*40
-
'conv2':tf.get_variable('conv2',[3,3,20,40],initializer=tf.contrib.layers.xavier_initializer_conv2d()),
-
#8*8*40->6*6*60->3*3*60
-
'conv3':tf.get_variable('conv3',[3,3,40,60],initializer=tf.contrib.layers.xavier_initializer_conv2d()),
-
#3*3*60->120
-
'fc1':tf.get_variable('fc1',[3*3*60,120],initializer=tf.contrib.layers.xavier_initializer()),
-
#120->6
-
'fc2':tf.get_variable('fc2',[120,6],initializer=tf.contrib.layers.xavier_initializer()),
-
}
-
with tf.variable_scope("biases"):
-
self.biases={
-
'conv1':tf.get_variable('conv1',[20,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)),
-
'conv2':tf.get_variable('conv2',[40,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)),
-
'conv3':tf.get_variable('conv3',[60,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)),
-
'fc1':tf.get_variable('fc1',[120,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)),
-
'fc2':tf.get_variable('fc2',[6,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32))
-
-
}
-
-
def inference(self,images):
-
# 向量转为矩阵
-
images = tf.reshape(images, shape=[-1, 39,39, 3])# [batch, in_height, in_width, in_channels]
-
images=(tf.cast(images,tf.float32)/255.-0.5)*2#归一化处理
-
-
-
-
#第一层
-
conv1=tf.nn.bias_add(tf.nn.conv2d(images, self.weights['conv1'], strides=[1, 1, 1, 1], padding='VALID'),
-
self.biases['conv1'])
-
-
relu1= tf.nn.relu(conv1)
-
pool1=tf.nn.max_pool(relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
-
-
-
#第二层
-
conv2=tf.nn.bias_add(tf.nn.conv2d(pool1, self.weights['conv2'], strides=[1, 1, 1, 1], padding='VALID'),
-
self.biases['conv2'])
-
relu2= tf.nn.relu(conv2)
-
pool2=tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
-
-
-
# 第三层
-
conv3=tf.nn.bias_add(tf.nn.conv2d(pool2, self.weights['conv3'], strides=[1, 1, 1, 1], padding='VALID'),
-
self.biases['conv3'])
-
relu3= tf.nn.relu(conv3)
-
pool3=tf.nn.max_pool(relu3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
-
-
-
# 全连接层1,先把特征图转为向量
-
flatten = tf.reshape(pool3, [-1, self.weights['fc1'].get_shape().as_list()[0]])
-
-
drop1=tf.nn.dropout(flatten,0.5)
-
fc1=tf.matmul(drop1, self.weights['fc1'])+self.biases['fc1']
-
-
fc_relu1=tf.nn.relu(fc1)
-
-
fc2=tf.matmul(fc_relu1, self.weights['fc2'])+self.biases['fc2']
-
-
return fc2
-
def inference_test(self,images):
-
# 向量转为矩阵
-
images = tf.reshape(images, shape=[-1, 39,39, 3])# [batch, in_height, in_width, in_channels]
-
images=(tf.cast(images,tf.float32)/255.-0.5)*2#归一化处理
-
-
-
-
#第一层
-
conv1=tf.nn.bias_add(tf.nn.conv2d(images, self.weights['conv1'], strides=[1, 1, 1, 1], padding='VALID'),
-
self.biases['conv1'])
-
-
relu1= tf.nn.relu(conv1)
-
pool1=tf.nn.max_pool(relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
-
-
-
#第二层
-
conv2=tf.nn.bias_add(tf.nn.conv2d(pool1, self.weights['conv2'], strides=[1, 1, 1, 1], padding='VALID'),
-
self.biases['conv2'])
-
relu2= tf.nn.relu(conv2)
-
pool2=tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
-
-
-
# 第三层
-
conv3=tf.nn.bias_add(tf.nn.conv2d(pool2, self.weights['conv3'], strides=[1, 1, 1, 1], padding='VALID'),
-
self.biases['conv3'])
-
relu3= tf.nn.relu(conv3)
-
pool3=tf.nn.max_pool(relu3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
-
-
-
# 全连接层1,先把特征图转为向量
-
flatten = tf.reshape(pool3, [-1, self.weights['fc1'].get_shape().as_list()[0]])
-
-
fc1=tf.matmul(flatten, self.weights['fc1'])+self.biases['fc1']
-
fc_relu1=tf.nn.relu(fc1)
-
-
fc2=tf.matmul(fc_relu1, self.weights['fc2'])+self.biases['fc2']
-
-
return fc2
-
-
#计算softmax交叉熵损失函数
-
def sorfmax_loss(self,predicts,labels):
-
predicts=tf.nn.softmax(predicts)
-
labels=tf.one_hot(labels,self.weights['fc2'].get_shape().as_list()[1])
-
loss =-tf.reduce_mean(labels * tf.log(predicts))# tf.nn.softmax_cross_entropy_with_logits(predicts, labels)
-
self.cost= loss
-
return self.cost
-
#梯度下降
-
def optimer(self,loss,lr=0.001):
-
train_optimizer = tf.train.GradientDescentOptimizer(lr).minimize(loss)
-
-
return train_optimizer
-
-
-
def train():
-
encode_to_tfrecords("data/train.txt","data",'train.tfrecords',(45,45))
-
image,label=decode_from_tfrecords('data/train.tfrecords')
-
batch_image,batch_label=get_batch(image,label,batch_size=50,crop_size=39)#batch 生成测试
-
-
-
-
-
-
-
-
#网络链接,训练所用
-
net=network()
-
inf=net.inference(batch_image)
-
loss=net.sorfmax_loss(inf,batch_label)
-
opti=net.optimer(loss)
-
-
-
#验证集所用
-
encode_to_tfrecords("data/val.txt","data",'val.tfrecords',(45,45))
-
test_image,test_label=decode_from_tfrecords('data/val.tfrecords',num_epoch=None)
-
test_images,test_labels=get_test_batch(test_image,test_label,batch_size=120,crop_size=39)#batch 生成测试
-
test_inf=net.inference_test(test_images)
-
correct_prediction = tf.equal(tf.cast(tf.argmax(test_inf,1),tf.int32), test_labels)
-
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
-
-
-
-
-
-
init=tf.initialize_all_variables()
-
with tf.Session() as session:
-
session.run(init)
-
coord = tf.train.Coordinator()
-
threads = tf.train.start_queue_runners(coord=coord)
-
max_iter=100000
-
iter=0
-
if os.path.exists(os.path.join("model",'model.ckpt')) is True:
-
tf.train.Saver(max_to_keep=None).restore(session, os.path.join("model",'model.ckpt'))
-
while iter<max_iter:
-
loss_np,_,label_np,image_np,inf_np=session.run([loss,opti,batch_label,batch_image,inf])
-
#print image_np.shape
-
#cv2.imshow(str(label_np[0]),image_np[0])
-
#print label_np[0]
-
#cv2.waitKey()
-
#print label_np
-
if iter%50==0:
-
print 'trainloss:',loss_np
-
if iter%500==0:
-
accuracy_np=session.run([accuracy])
-
print '***************test accruacy:',accuracy_np,'*******************'
-
tf.train.Saver(max_to_keep=None).save(session, os.path.join('model','model.ckpt'))
-
iter+=1
-
-
-
-
-
-
coord.request_stop()#queue需要关闭,否则报错
-
coord.join(threads)
-
-
train()
3、可视化显示
(1)首先再源码中加入需要跟踪的变量:
tf.scalar_summary("cost_function", loss)#损失函数值
(2)然后定义执行操作:
merged_summary_op = tf.merge_all_summaries()
(3)再session中定义保存路径:
summary_writer = tf.train.SummaryWriter('log', session.graph)
(4)然后再session执行的时候,保存:
-
summary_str,loss_np,_=session.run([merged_summary_op,loss,opti])
-
summary_writer.add_summary(summary_str, iter)
(5)最后只要训练完毕后,直接再终端输入命令:
python /usr/local/lib/python2.7/dist-packages/tensorflow/tensorboard/tensorboard.py --logdir=log
然后打开浏览器网址:
http://0.0.0.0:6006
即可观训练曲线。
4、测试阶段
测试阶段主要是直接通过加载图模型、读取参数等,然后直接通过tensorflow的相关函数,进行调用,而不需要网络架构相关的代码;通过内存feed_dict的方式,对相关的输入节点赋予相关的数据,进行前向传导,并获取相关的节点数值。
-
#coding=utf-8
-
import tensorflow as tf
-
import os
-
import cv2
-
-
def load_model(session,netmodel_path,param_path):
-
new_saver = tf.train.import_meta_graph(netmodel_path)
-
new_saver.restore(session, param_path)
-
x= tf.get_collection('test_images')[0]#在训练阶段需要调用tf.add_to_collection('test_images',test_images),保存之
-
y = tf.get_collection("test_inf")[0]
-
batch_size = tf.get_collection("batch_size")[0]
-
return x,y,batch_size
-
-
def load_images(data_root):
-
filename_queue = tf.train.string_input_producer(data_root)
-
image_reader = tf.WholeFileReader()
-
key,image_file = image_reader.read(filename_queue)
-
image = tf.image.decode_jpeg(image_file)
-
return image, key
-
-
def test(data_root="data/race/cropbrown"):
-
image_filenames=os.listdir(data_root)
-
image_filenames=[(data_root+'/'+i) for i in image_filenames]
-
-
-
#print cv2.imread(image_filenames[0]).shape
-
#image,key=load_images(image_filenames)
-
race_listsrc=['black','brown','white','yellow']
-
with tf.Session() as session:
-
coord = tf.train.Coordinator()
-
threads = tf.train.start_queue_runners(coord=coord)
-
-
-
-
x,y,batch_size=load_model(session,os.path.join("model",'model_ori_race.ckpt.meta'),
-
os.path.join("model",'model_ori_race.ckpt'))
-
predict_label=tf.cast(tf.argmax(y,1),tf.int32)
-
print x.get_shape()
-
for imgf in image_filenames:
-
image=cv2.imread(imgf)
-
image=cv2.resize(image,(76,76)).reshape((1,76,76,3))
-
print "cv shape:",image.shape
-
-
-
#cv2.imshow("t",image_np[:,:,::-1])
-
y_np=session.run(predict_label,feed_dict = {x:image, batch_size:1})
-
print race_listsrc[y_np]
-
-
-
coord.request_stop()#queue需要关闭,否则报错
-
coord.join(threads)
4、移植阶段
(1)一个算法经过实验阶段后,接着就要进入移植商用,因此接着需要采用tensorflow的c api函数,直接进行预测推理,首先我们先把tensorflow编译成链接库,然后编写cmake,调用tensorflow链接库:
-
bazel build -c opt //tensorflow:libtensorflow.so
-
在bazel-bin/tensorflow目录下会生成libtensorflow.so文件
5、C++ API调用、cmake 编写:
三、熟悉常用API
1、LSTM使用
-
import tensorflow.nn.rnn_cell
-
-
lstm = rnn_cell.BasicLSTMCell(lstm_size)#创建一个lstm cell单元类,隐藏层神经元个数为lstm_size
-
-
state = tf.zeros([batch_size, lstm.state_size])#一个序列隐藏层的状态值
-
-
loss = 0.0
-
for current_batch_of_words in words_in_dataset:
-
output, state = lstm(current_batch_of_words, state)#返回值为隐藏层神经元的输出
-
logits = tf.matmul(output, softmax_w) + softmax_b#matmul矩阵点乘
-
probabilities = tf.nn.softmax(logits)#softmax输出
-
loss += loss_function(probabilities, target_words)
1、one-hot函数:
-
#ont hot 可以把训练数据的标签,直接转换成one_hot向量,用于交叉熵损失函数
-
import tensorflow as tf
-
a=tf.convert_to_tensor([[1],[2],[4]])
-
b=tf.one_hot(a,5)
>>b的值为
-
[[[ 0. 1. 0. 0. 0.]]
-
-
[[ 0. 0. 1. 0. 0.]]
-
-
[[ 0. 0. 0. 0. 1.]]]
2、assign_sub
-
import tensorflow as tf
-
-
x = tf.Variable(10, name="x")
-
sub=x.assign_sub(3)#如果直接采用x.assign_sub,那么可以看到x的值也会发生变化
-
init_op=tf.initialize_all_variables()
-
with tf.Session() as sess:
-
sess.run(init_op)
-
print sub.eval()
-
print x.eval()
可以看到输入sub=x=7
state_ops.assign_sub
采用state_ops的assign_sub也是同样sub=x=7
也就是说assign函数返回结果值的同时,变量本身的值也会被改变
3、变量查看
-
#查看所有的变量
-
for l in tf.all_variables():
-
print l.name
4、slice函数:
-
import cv2
-
import tensorflow as tf
-
#slice 函数可以用于切割子矩形图片,参数矩形框的rect,begin=(minx,miny),size=(width,height)
-
minx=20
-
miny=30
-
height=100
-
width=200
-
-
image=tf.placeholder(dtype=tf.uint8,shape=(386,386,3))
-
rect_image=tf.slice(image,(miny,minx,0),(height,width,-1))
-
-
-
cvimage=cv2.imread("1.jpg")
-
cv2.imshow("cv2",cvimage[miny:(miny+height),minx:(minx+width),:])
-
-
-
with tf.Session() as sess:
-
tfimage=sess.run([rect_image],{image:cvimage})
-
cv2.imshow('tf',tfimage[0])
-
cv2.waitKey()
5、正太分布随机初始化
tf.truncated_normal
6、打印操作运算在硬件设备信息
tf.ConfigProto(log_device_placement=True)
7、变量域名的reuse:
-
import tensorflow as tf
-
with tf.variable_scope('foo'):#在没有启用reuse的情况下,如果该变量还未被创建,那么就创建该变量,如果已经创建过了,那么就获取该共享变量
-
v=tf.get_variable('v',[1])
-
with tf.variable_scope('foo',reuse=True):#如果启用了reuse,那么编译的时候,如果get_variable没有遇到一个已经创建的变量,是会出错的
-
v1=tf.get_variable('v1',[1])
8、allow_soft_placement的使用:allow_soft_placement=True,允许当在代码中指定tf.device设备,如果设备找不到,那么就采用默认的设备。如果该参数设置为false,当设备找不到的时候,会直接编译不通过。
9、batch normalize调用:
tf.contrib.layers.batch_norm(x, decay=0.9, updates_collections=None, epsilon=self.epsilon, scale=True, scope=self.name)