转:pytorch版的bilstm+crf实现sequence label
http://blog.csdn.net/appleml/article/details/78664824
在理解CRF的时候费了一些功夫,将一些难以理解的地方稍微做了下标注,隔三差五看看加强记忆, 代码是pytorch文档上的example
import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.optim as optim
def to_scalar(var): #var是Variable,维度是1
# returns a python float
return var.view(-1).data.tolist()[0]
def argmax(vec):
# return the argmax as a python int
_, idx = torch.max(vec, 1)
return to_scalar(idx)
def prepare_sequence(seq, to_ix):
idxs = [to_ix[w] for w in seq]
tensor = torch.LongTensor(idxs)
return autograd.Variable(tensor)
# Compute log sum exp in a numerically stable way for the forward algorithm
def log_sum_exp(vec): #vec是1*5, type是Variable
max_score = vec[0, argmax(vec)]
#max_score维度是1, max_score.view(1,-1)维度是1*1,max_score.view(1, -1).expand(1, vec.size()[1])的维度是1*5
max_score_broadcast = max_score.view(1, -1).expand(1, vec.size()[1]) # vec.size()维度是1*5
return max_score + torch.log(torch.sum(torch.exp(vec - max_score_broadcast)))#为什么指数之后再求和,而后才log呢
class BiLSTM_CRF(nn.Module):
def __init__(self, vocab_size, tag_to_ix, embedding_dim, hidden_dim):
super(BiLSTM_CRF, self).__init__()
self.embedding_dim = embedding_dim
self.hidden_dim = hidden_dim
self.vocab_size = vocab_size
self.tag_to_ix = tag_to_ix
self.tagset_size = len(tag_to_ix)
self.word_embeds = nn.Embedding(vocab_size, embedding_dim)
self.lstm = nn.LSTM(embedding_dim, hidden_dim // 2, num_layers=1, bidirectional=True)
# Maps the output of the LSTM into tag space.
self.hidden2tag = nn.Linear(hidden_dim, self.tagset_size)
# Matrix of transition parameters. Entry i,j is the score of
# transitioning *to* i *from* j.
self.transitions = nn.Parameter(torch.randn(self.tagset_size, self.tagset_size))
# These two statements enforce the constraint that we never transfer
# to the start tag and we never transfer from the stop tag
self.transitions.data[tag_to_ix[START_TAG], :] = -10000
self.transitions.data[:, tag_to_ix[STOP_TAG]] = -10000
self.hidden = self.init_hidden()
def init_hidden(self):
return (autograd.Variable(torch.randn(2, 1, self.hidden_dim // 2)),
autograd.Variable(torch.randn(2, 1, self.hidden_dim // 2)))
#预测序列的得分
def _forward_alg(self, feats):
# Do the forward algorithm to compute the partition function
init_alphas = torch.Tensor(1, self.tagset_size).fill_(-10000.)
# START_TAG has all of the score.
init_alphas[0][self.tag_to_ix[START_TAG]] = 0.
# Wrap in a variable so that we will get automatic backprop
forward_var = autograd.Variable(init_alphas) #初始状态的forward_var,随着step t变化
# Iterate through the sentence
for feat in feats: #feat的维度是5
alphas_t = [] # The forward variables at this timestep
for next_tag in range(self.tagset_size):
# broadcast the emission score: it is the same regardless of
# the previous tag
emit_score = feat[next_tag].view(1, -1).expand(1, self.tagset_size) #维度是1*5
# the ith entry of trans_score is the score of transitioning to
# next_tag from i
trans_score = self.transitions[next_tag].view(1, -1) #维度是1*5
# The ith entry of next_tag_var is the value for the
# edge (i -> next_tag) before we do log-sum-exp
#第一次迭代时理解:
# trans_score所有其他标签到B标签的概率
# 由lstm运行进入隐层再到输出层得到标签B的概率,emit_score维度是1*5,5个值是相同的
next_tag_var = forward_var + trans_score + emit_score
# The forward variable for this tag is log-sum-exp of all the
# scores.
alphas_t.append(log_sum_exp(next_tag_var))
forward_var = torch.cat(alphas_t).view(1, -1)#到第(t-1)step时5个标签的各自分数
terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]]
alpha = log_sum_exp(terminal_var)
return alpha
#得到feats
def _get_lstm_features(self, sentence):
self.hidden = self.init_hidden()
#embeds = self.word_embeds(sentence).view(len(sentence), 1, -1)
embeds = self.word_embeds(sentence)
embeds = embeds.unsqueeze(1)
lstm_out, self.hidden = self.lstm(embeds, self.hidden)
lstm_out = lstm_out.view(len(sentence), self.hidden_dim)
lstm_feats = self.hidden2tag(lstm_out)
return lstm_feats
#得到gold_seq tag的score
def _score_sentence(self, feats, tags):
# Gives the score of a provided tag sequence
score = autograd.Variable(torch.Tensor([0]))
tags = torch.cat([torch.LongTensor([self.tag_to_ix[START_TAG]]), tags]) #将START_TAG的标签3拼接到tag序列上
for i, feat in enumerate(feats):
#self.transitions[tags[i + 1], tags[i]] 实际得到的是从标签i到标签i+1的转移概率
#feat[tags[i+1]], feat是step i 的输出结果,有5个值,对应B, I, E, START_TAG, END_TAG, 取对应标签的值
score = score + self.transitions[tags[i + 1], tags[i]] + feat[tags[i + 1]]
score = score + self.transitions[self.tag_to_ix[STOP_TAG], tags[-1]]
return score
#解码,得到预测的序列,以及预测序列的得分
def _viterbi_decode(self, feats):
backpointers = []
# Initialize the viterbi variables in log space
init_vvars = torch.Tensor(1, self.tagset_size).fill_(-10000.)
init_vvars[0][self.tag_to_ix[START_TAG]] = 0
# forward_var at step i holds the viterbi variables for step i-1
forward_var = autograd.Variable(init_vvars)
for feat in feats:
bptrs_t = [] # holds the backpointers for this step
viterbivars_t = [] # holds the viterbi variables for this step
for next_tag in range(self.tagset_size):
# next_tag_var[i] holds the viterbi variable for tag i at the
# previous step, plus the score of transitioning
# from tag i to next_tag.
# We don't include the emission scores here because the max
# does not depend on them (we add them in below)
next_tag_var = forward_var + self.transitions[next_tag] #其他标签(B,I,E,Start,End)到标签next_tag的概率
best_tag_id = argmax(next_tag_var)
bptrs_t.append(best_tag_id)
viterbivars_t.append(next_tag_var[0][best_tag_id])
# Now add in the emission scores, and assign forward_var to the set
# of viterbi variables we just computed
forward_var = (torch.cat(viterbivars_t) + feat).view(1, -1)#从step0到step(i-1)时5个序列中每个序列的最大score
backpointers.append(bptrs_t) #bptrs_t有5个元素
# Transition to STOP_TAG
terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]]#其他标签到STOP_TAG的转移概率
best_tag_id = argmax(terminal_var)
path_score = terminal_var[0][best_tag_id]
# Follow the back pointers to decode the best path.
best_path = [best_tag_id]
for bptrs_t in reversed(backpointers):#从后向前走,找到一个best路径
best_tag_id = bptrs_t[best_tag_id]
best_path.append(best_tag_id)
# Pop off the start tag (we dont want to return that to the caller)
start = best_path.pop()
assert start == self.tag_to_ix[START_TAG] # Sanity check
best_path.reverse()# 把从后向前的路径正过来
return path_score, best_path
def neg_log_likelihood(self, sentence, tags):
feats = self._get_lstm_features(sentence)
forward_score = self._forward_alg(feats)
gold_score = self._score_sentence(feats, tags)
return forward_score - gold_score
def forward(self, sentence): # dont confuse this with _forward_alg above.
# Get the emission scores from the BiLSTM
lstm_feats = self._get_lstm_features(sentence)
# Find the best path, given the features.
score, tag_seq = self._viterbi_decode(lstm_feats)
return score, tag_seq
START_TAG = "<START>"
STOP_TAG = "<STOP>"
EMBEDDING_DIM = 5
HIDDEN_DIM = 4
# Make up some training data
training_data = [("the wall street journal reported today that apple corporation made money".split(), "B I I I O O O B I O O".split()),
("georgia tech is a university in georgia".split(), "B I O O O O B".split())]
word_to_ix = {}
for sentence, tags in training_data:
for word in sentence:
if word not in word_to_ix:
word_to_ix[word] = len(word_to_ix)
tag_to_ix = {"B": 0, "I": 1, "O": 2, START_TAG: 3, STOP_TAG: 4}
model = BiLSTM_CRF(len(word_to_ix), tag_to_ix, EMBEDDING_DIM, HIDDEN_DIM)
optimizer = optim.SGD(model.parameters(), lr=0.01, weight_decay=1e-4)
# Check predictions before training
# precheck_sent = prepare_sequence(training_data[0][0], word_to_ix)
# precheck_tags = torch.LongTensor([tag_to_ix[t] for t in training_data[0][1]])
# print(model(precheck_sent))
# Make sure prepare_sequence from earlier in the LSTM section is loaded
for epoch in range(1): # again, normally you would NOT do 300 epochs, it is toy data
for sentence, tags in training_data:
# Step 1. Remember that Pytorch accumulates gradients.
# We need to clear them out before each instance
model.zero_grad()
# Step 2. Get our inputs ready for the network, that is,
# turn them into Variables of word indices.
sentence_in = prepare_sequence(sentence, word_to_ix)
targets = torch.LongTensor([tag_to_ix[t] for t in tags])
# Step 3. Run our forward pass.
neg_log_likelihood = model.neg_log_likelihood(sentence_in, targets)
# Step 4. Compute the loss, gradients, and update the parameters by
# calling optimizer.step()
neg_log_likelihood.backward()
optimizer.step()
# Check predictions after training
precheck_sent = prepare_sequence(training_data[0][0], word_to_ix)
print(model(precheck_sent)[