LSTM简介以及数学推导(FULL BPTT)
http://blog.csdn.net/a635661820/article/details/45390671
前段时间看了一些关于LSTM方面的论文,一直准备记录一下学习过程的,因为其他事儿,一直拖到了现在,记忆又快模糊了。现在赶紧补上,本文的组织安排是这样的:先介绍rnn的BPTT所存在的问题,然后介绍最初的LSTM结构,在介绍加了遗忘控制门的,然后是加了peephole connections结构的LSTM,都是按照真实提出的时间顺序来写的。本文相当于把各个论文核心部分简要汇集一下而做的笔记,已提供快速的了解。
一.rnn结构的BPTT学习算法存在的问题
先看一下比较典型的BPTT一个展开的结构,如下图,这里只考虑了部分图,因为其他部分不是这里要讨论的内容。
对于t时刻的误差信号计算如下:
这样权值的更新方式如下:
上面的公式在BPTT中是非常常见的了,那么如果这个误差信号一直往过去传呢,假设任意两个节点u, v他们的关系是下面这样的:
那么误差传递信号的关系可以写成如下的递归式:
n表示图中一层神经元的个数,这个递归式的大概含义不难理解,要求t-q时刻误差信号对t时刻误差信号的偏导,就先求出t-q+1时刻对t时刻的,然后把求出来的结果传到t-q时刻,递归停止条件是q = 1时,就是刚开始写的那部分计算公式了。将上面的递归式展开后可以得到:
论文里面说的是可以通过归纳来证明,我没仔细推敲这里了,把里面连乘展开看容易明白一点:
整个结果式对T求和的次数是n^(q-1), 即T有n^(q-1)项,那么下面看问题出在哪儿。
如果|T| > 1, 误差就会随着q的增大而呈指数增长,那么网络的参数更新会引起非常大的震荡。
如果|T| < 1, 误差就会消失,导致学习无效,一般激活函数用simoid函数,它的倒数最大值是0.25, 权值最大值要小于4才能保证不会小于1。
误差呈指数增长的现象比较少,误差消失在BPTT中很常见。在原论文中还有更详细的数学分析,但是了解到此个人觉的已经足够理解问题所在了。
二.最初的LSTM结构
为了克服误差消失的问题,需要做一些限制,先假设仅仅只有一个神经元与自己连接,简图如下:
根据上面的,t时刻的误差信号计算如下:
为了使误差不产生变化,可以强制令下式为1:
根据这个式子,可以得到:
这表示激活函数是线性的,常常的令fj(x) = x, wjj = 1.0,这样就获得常数误差流了,也叫做CEC。
但是光是这样是不行的,因为存在输入输出处权值更新的冲突(这里原论文里面的解释我不是很明白),所以加上了两道控制门,分别是input gate, output gate,来解决这个矛盾,图如下:
图中增加了两个控制门,所谓控制的意思就是计算cec的输入之前,乘以input gate的输出,计算cec的输出时,将其结果乘以output gate的输出,整个方框叫做block, 中间的小圆圈是CEC, 里面是一条y = x的直线表示该神经元的激活函数是线性的,自连接的权重为1.0
三.增加forget gate
四.增加Peephole的LSTM结构
- input gate, forget gate的输入输出
- cell的输入
- output gate的输入输出
- cell的输出(这里也是block的输出)
五.一个LSTM的FULL BPTT推导(用误差信号)
- wij表示从神经元i到j的连接权重(注意这和很多论文的表示是反着的)
- 神经元的输入用a表示,输出用b表示
- 下标 ι, φ 和 ω分别表示input gate, forget gate,output gate
- c下标表示cell,从cell到 input, forget和output gate的peephole权重分别记做 wcι , wcφ and wcω
- Sc表示cell c的状态
- 控制门的激活函数用f表示,g,h分别表示cell的输入输出激活函数
- I表示输入层的神经元的个数,K是输出层的神经元个数,H是隐层cell的个数