tensorflow实现基于LSTM的文本分类方法

http://blog.csdn.net/u010223750/article/details/53334313?locationNum=7&fps=1

引言

学习一段时间的tensor flow之后,想找个项目试试手,然后想起了之前在看Theano教程中的一个文本分类的实例,这个星期就用tensorflow实现了一下,感觉和之前使用的theano还是有很大的区别,有必要总结mark一下

模型说明

这个分类的模型其实也是很简单,主要就是一个单层的LSTM模型,当然也可以实现多层的模型,多层的模型使用Tensorflow尤其简单,下面是这个模型的图 
model architecture 
简单解释一下这个图,每个word经过embedding之后,进入LSTM层,这里LSTM是标准的LSTM,然后经过一个时间序列得到的t个隐藏LSTM神经单元的向量,这些向量经过mean pooling层之后,可以得到一个向量h,然后紧接着是一个简单的逻辑斯蒂回归层(或者一个softmax层)得到一个类别分布向量。 
公式就不一一介绍了,因为这个实验是使用了Tensorflow重现了Theano的实现,因此具体的公式可以参看LSTM Networks for Sentiment Analysis这个链接。

tensorflow实现

鄙人接触tensor flow的时间不长,也是在慢慢摸索,但是因为有之前使用Theano的经验,对于符号化编程也不算陌生,因此上手Tensorflow倒也容易。但是感觉tensorflow还是和theano有着很多不一样的地方,这里也会提及一下。 
代码的模型的主要如下:

import tensorflow as tf
import numpy as np

class RNN_Model(object):



    def __init__(self,config,is_training=True):

        self.keep_prob=config.keep_prob
        self.batch_size=tf.Variable(0,dtype=tf.int32,trainable=False)

        num_step=config.num_step
        self.input_data=tf.placeholder(tf.int32,[None,num_step])
        self.target = tf.placeholder(tf.int64,[None])
        self.mask_x = tf.placeholder(tf.float32,[num_step,None])

        class_num=config.class_num
        hidden_neural_size=config.hidden_neural_size
        vocabulary_size=config.vocabulary_size
        embed_dim=config.embed_dim
        hidden_layer_num=config.hidden_layer_num
        self.new_batch_size = tf.placeholder(tf.int32,shape=[],name="new_batch_size")
        self._batch_size_update = tf.assign(self.batch_size,self.new_batch_size)

        #build LSTM network

        lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(hidden_neural_size,forget_bias=0.0,state_is_tuple=True)
        if self.keep_prob<1:
            lstm_cell =  tf.nn.rnn_cell.DropoutWrapper(
                lstm_cell,output_keep_prob=self.keep_prob
            )

        cell = tf.nn.rnn_cell.MultiRNNCell([lstm_cell]*hidden_layer_num,state_is_tuple=True)

        self._initial_state = cell.zero_state(self.batch_size,dtype=tf.float32)

        #embedding layer
        with tf.device("/cpu:0"),tf.name_scope("embedding_layer"):
            embedding = tf.get_variable("embedding",[vocabulary_size,embed_dim],dtype=tf.float32)
            inputs=tf.nn.embedding_lookup(embedding,self.input_data)

        if self.keep_prob<1:
            inputs = tf.nn.dropout(inputs,self.keep_prob)

        out_put=[]
        state=self._initial_state
        with tf.variable_scope("LSTM_layer"):
            for time_step in range(num_step):
                if time_step>0: tf.get_variable_scope().reuse_variables()
                (cell_output,state)=cell(inputs[:,time_step,:],state)
                out_put.append(cell_output)

        out_put=out_put*self.mask_x[:,:,None]

        with tf.name_scope("mean_pooling_layer"):

            out_put=tf.reduce_sum(out_put,0)/(tf.reduce_sum(self.mask_x,0)[:,None])

        with tf.name_scope("Softmax_layer_and_output"):
            softmax_w = tf.get_variable("softmax_w",[hidden_neural_size,class_num],dtype=tf.float32)
            softmax_b = tf.get_variable("softmax_b",[class_num],dtype=tf.float32)
            self.logits = tf.matmul(out_put,softmax_w)+softmax_b

        with tf.name_scope("loss"):
            self.loss = tf.nn.sparse_softmax_cross_entropy_with_logits(self.logits+1e-10,self.target)
            self.cost = tf.reduce_mean(self.loss)

        with tf.name_scope("accuracy"):
            self.prediction = tf.argmax(self.logits,1)
            correct_prediction = tf.equal(self.prediction,self.target)
            self.correct_num=tf.reduce_sum(tf.cast(correct_prediction,tf.float32))
            self.accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32),name="accuracy")

        #add summary
        loss_summary = tf.scalar_summary("loss",self.cost)
        #add summary
        accuracy_summary=tf.scalar_summary("accuracy_summary",self.accuracy)

        if not is_training:
            return

        self.globle_step = tf.Variable(0,name="globle_step",trainable=False)
        self.lr = tf.Variable(0.0,trainable=False)

        tvars = tf.trainable_variables()
        grads, _ = tf.clip_by_global_norm(tf.gradients(self.cost, tvars),
                                      config.max_grad_norm)


        # Keep track of gradient values and sparsity (optional)
        grad_summaries = []
        for g, v in zip(grads, tvars):
            if g is not None:
                grad_hist_summary = tf.histogram_summary("{}/grad/hist".format(v.name), g)
                sparsity_summary = tf.scalar_summary("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
                grad_summaries.append(grad_hist_summary)
                grad_summaries.append(sparsity_summary)
        self.grad_summaries_merged = tf.merge_summary(grad_summaries)

        self.summary =tf.merge_summary([loss_summary,accuracy_summary,self.grad_summaries_merged])



        optimizer = tf.train.GradientDescentOptimizer(self.lr)
        optimizer.apply_gradients(zip(grads, tvars))
        self.train_op=optimizer.apply_gradients(zip(grads, tvars))

        self.new_lr = tf.placeholder(tf.float32,shape=[],name="new_learning_rate")
        self._lr_update = tf.assign(self.lr,self.new_lr)

    def assign_new_lr(self,session,lr_value):
        session.run(self._lr_update,feed_dict={self.new_lr:lr_value})
    def assign_new_batch_size(self,session,batch_size_value):
        session.run(self._batch_size_update,feed_dict={self.new_batch_size:batch_size_value})
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115

模型不复杂,也就不一一解释了,在debug的时候,还是入了几个tensorflow的坑,因此想单独说一下这几个坑。

坑1:tensor flow的LSTM实现 
tensorflow是已经写好了几个LSTM的实现类,可以很方便的使用,而且也可以选择多种类型的LSTM,包括Basic、Bi-Directional等等。 
这个代码用的是BasicLSTM:

 #build LSTM network

        lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(hidden_neural_size,forget_bias=0.0,state_is_tuple=True)
        if self.keep_prob<1:
            lstm_cell =  tf.nn.rnn_cell.DropoutWrapper(
                lstm_cell,output_keep_prob=self.keep_prob
            )
        cell = tf.nn.rnn_cell.MultiRNNCell([lstm_cell]*hidden_layer_num,state_is_tuple=True)
        self._initial_state = cell.zero_state(self.batch_size,dtype=tf.float32)
        out_put=[]
        state=self._initial_state
        with tf.variable_scope("LSTM_layer"):
            for time_step in range(num_step):
                if time_step>0: tf.get_variable_scope().reuse_variables()
                (cell_output,state)=cell(inputs[:,time_step,:],state)
                out_put.append(cell_output)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

在这段代码里面,tf.nn.rnn_cell.BasicLSTMCell的初始化只需要制定LSTM神经元的隐含神经元的个数即可,然后需要初始化LSTM网络的参数:self._initial_state = cell.zero_state(self.batch_size,dtype=tf.float32),这句代码乍看一下很迷糊,开始并不知道是什么意义,在实验以及查阅源码之后,返现这句话返回的是两个维度是batch_size*hidden_neural_size的零向量元组,其实就是LSTM初始化的c0h0向量,当然这里指的是对于单层的LSTM,对于多层的,返回的是多个元组。

坑2:这段代码中的zero_state和循环代数num_step都需要制定 
这里比较蛋疼,这就意味着tensorflow中实现变长的情况是要padding的,而且需要全部一样的长度,但是因为数据集的原因,不可能每个batch的size都是一样的,这里就需要每次运行前,动态制定batch_size的大小,代码中体现这个的是assign_new_batch_size函数,但是对于num_step参数却不能动态指定(可能是因为笔者没找到,但是指定tf.Variable()方法确实不行),出于无奈只能将数据集全部padding成指定大小的size,当然既然使用了padding那就必须使用mask矩阵进行计算。

坑3:cost返回non 
cost返回Non一般是因为在使用交叉熵时候,logits这一边出现了0值,因此stack overflow上推荐的一般是:sparse_softmax_cross_entropy_with_logits(self.logits+1e-10,self.target)这样写法

训练and结果

实验背景: 
tensor flow: tensor flow 1.1 
platform:mac OS 
数据集:subject dataset,数据集都经过了预处理,拿到的是其在词表中的索引 
得益于tensorboard各个参数训练过程都可以可视化,下面是实验训练结果:

训练集训练结果: 
这里写图片描述 
验证集训练结果 
这里写图片描述 
损失函数训练过程 
这里写图片描述 
各个参数训练结果: 
这里写图片描述

最终在测试集上,准确度约为85%,还不错。

比较tensorflow和thenao

tensor flow 和 theano 是最近比较流行的深度学习框架,两者非常相似但是两者又不一样,下面就我个人体验比较下两者的异同。

  1. 难易程度

    就使用难度而言,tensorflow的便易性要远胜于theano,毕竟theano是一堆学者研究出来的,而tensorflow是Google研究出来的,比较面向工业化。tensor flow直接集成了学术界的很多方法,比如像RNN、LSTM等都已经被tensorflow集成了,还有比如参数更新方法如梯度下降、Adadelta等也已经被tensorflow写好了,但是对于theano这个就得自己写,当然难易程度不一样了。

  2. 灵活性

    就灵活性而言,theano是要胜过tensor flow的,正是因为上一点theano的门槛稍高,却也使得theano有着更大的弹性,可以实现自己任意定义的网络结果,这里不是说tensorflow不行,tensorflow也能写,但是使用tensorflow久了之后,写一些自定义的结构能力就会生疏许多,比如修改LSTM内的一些结构。而Theano则没有这个约束。

  3. 容错性 
    我个人觉得theano的容错性是比tensor flow要高的,theano定义变量,只需要制定类型,比如imatrix、ivertor之类的而不用制定任何的维度,只要你输入的数据和你的网络结构图能够对的上的话,就没问题,而tensorflow择需要预先指定一些参数(如上面代码的num_step参数),相比而言,theano的容错能力多得多,当然这样也有坏处,那就是可能对导致代码调试起来比较费劲儿。

代码 
本文的代码可以在这里获得,转载请注明出处。 
25/11/2016,于北京

posted @ 2017-08-03 15:30  Django's blog  阅读(695)  评论(0编辑  收藏  举报