SCIKIT-LEARN与GBDT使用案例
http://blog.csdn.net/superzrx/article/details/47073847
安装
SCIKIT-LEARN是一个基于Python/numpy/scipy的机器学习库
windows下最简单的安装方式是使用winpython进行安装
WinPython地址
GBDT使用
这段代码展示了一个简单的GBDT调用过程
数据维数24,训练数据1990,测试数据221
import numpy as np
from sklearn.ensemble import GradientBoostingRegressor
gbdt=GradientBoostingRegressor(
loss='ls'
, learning_rate=0.1
, n_estimators=100
, subsample=1
, min_samples_split=2
, min_samples_leaf=1
, max_depth=3
, init=None
, random_state=None
, max_features=None
, alpha=0.9
, verbose=0
, max_leaf_nodes=None
, warm_start=False
)
train_feat=np.genfromtxt("train_feat.txt",dtype=np.float32)
train_id=np.genfromtxt("train_id.txt",dtype=np.float32)
test_feat=np.genfromtxt("test_feat.txt",dtype=np.float32)
test_id=np.genfromtxt("test_id.txt",dtype=np.float32)
print train_feat.shape,rain_id.shape,est_feat.shape,est_id.shape
gbdt.fit(train_feat,train_id)
pred=gbdt.predict(test_feat)
total_err=0
for i in range(pred.shape[0]):
print pred[i],test_id[i]
err=(pred[i]-test_id[i])/test_id[i]
total_err+=err*err
print total_err/pred.shape[0]
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
train_id.txt示例
320
361
364
336
358
- 1
- 2
- 3
- 4
- 5
- 1
- 2
- 3
- 4
- 5
train_feat.txt示例
0.00598802 0.569231 0.647059 0.95122 -0.225434 0.837989 0.357258 -0.0030581 -0.383475
0.161677 0.743195 0.682353 0.960976 -0.0867052 0.780527 0.282945 0.149847 -0.0529661
0.113772 0.744379 0.541176 0.990244 -0.00578035 0.721468 0.43411 -0.318043 0.288136
0.0538922 0.608284 0.764706 0.95122 -0.248555 0.821229 0.848604 -0.0030581 0.239407
0.173653 0.866272 0.682353 0.95122 0.017341 0.704709 -0.0210016 -0.195719 0.150424
- 1
- 2
- 3
- 4
- 5
- 1
- 2
- 3
- 4
- 5
测试结果与真值
333.986169852 334.0
360.84170859 360.0
342.658750421 343.0
329.591753015 328.0
374.247432336 374.0
- 1
- 2
- 3
- 4
- 5
- 1
- 2
- 3
- 4
- 5
调参与结果对比
误差度量采用预测值与真值的误差占真值的百分比的均值
方法 | 参数 | 平均误差百分比 |
---|---|---|
svm | 最佳参数 | 1.60452% |
gdbt | n_estimators=100,max_depth=3 | 2.29247% |
gdbt | n_estimators=1000,max_depth=3 | 1.23875% |
gdbt | n_estimators=1000,max_depth=5 | 1.14202% |
gdbt | n_estimators=1000,max_depth=7 | 1.02505% |
可以看出n_estimators和max_depth 与gbdt的表达能力相关度很高
同时gbdt相对svm效果更优
- 顶