TensorFlow分布式训练MNIST分类器
http://c.biancheng.net/view/2004.html
本节以分布式方式训练完整的 MNIST 分类器。
该案例受到下面博客文章的启发:http://ischlag.github.io/2016/06/12/async-distributed-tensorflow/,运行在 TensorFlow 1.2 上的代码可以在网址https://github.com/ischlag/distributed-tensorflow-example上找到。
注意,这个案例基于上一节,所以按顺序阅读可能会很方便。
具体做法
- 导入一些标准模块并定义运行计算的 TensorFlow 集群,然后为指定任务启动服务:
- 读取 MNIST 数据并定义用于训练的超参数:
- 检查角色是参数服务器还是 worker,如果是 worker 就定义一个简单的稠密神经网络,定义一个优化器以及用于评估分类器的度量(例如精确度):
- 启动一个监督器作为分布式设置的主机,主机是管理集群其余部分的机器。会话由主机维护,关键指令是 sv=tf.train.Supervisor(is_chief=(FLAGS.task_index==0))。另外,通过 prepare_or_wait_for_session(server.target),监督器将等待模型投入使用。请注意,每个 worker 将处理不同的批量模型,然后将最终的模型提供给主机:
这个案例描述了一个分布式 MNIST 分类器的示例,在这个例子中,TensorFlow 允许定义一个三台机器的集群,一个用作参数服务器,另外两个用作独立批量训练数据的 worker。
分类:
数据挖掘及机器学习
标签:
tensorflow
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 地球OL攻略 —— 某应届生求职总结
· 提示词工程——AI应用必不可少的技术
· Open-Sora 2.0 重磅开源!
· 周边上新:园子的第一款马克杯温暖上架
2014-05-13 Hadoop的Python框架指南
2014-05-13 Python 调试工具
2014-05-13 Django 1.6 的测试驱动开发
2014-05-13 简化 Django
2014-05-13 由浅入深探究mysql索引结构原理、性能分析与优化
2014-05-13 Instagram的技术架构
2014-05-13 nosql数据库选型