SparkSQL DSL开发(Old)
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.hive.HiveContext
import org.apache.spark.{SparkConf, SparkContext}
case class Person2(name: String, age: Int, sex: String, salary: Int, deptNo: Int)
case class Dept(deptNo: Int, deptName: String)
object SparkSQLDSLDemo {
def main(args: Array[String]): Unit = {
// 1. 上下文创建
val conf = new SparkConf()
.setAppName("demo")
.setMaster("local[*]")
val sc = SparkContext.getOrCreate(conf)
// 当使用HiveContext的时候需要给定jvm的参数:-XX:PermSize=128M -XX:MaxPermSize=256M
val sqlContext = new HiveContext(sc)
import sqlContext.implicits._
import org.apache.spark.sql.functions._
sqlContext.udf.register("sexToNum", (sex: String) => {
sex.toUpperCase match {
case "M" => 0
case "F" => 1
case _ => -1
}
})
sqlContext.udf.register("self_avg", SelfAvgUDAF)
// 2. 直接创建模拟数据
val rdd1 = sc.parallelize(Array(
Person2("张三", 21, "M", 1235, 1),
Person2("李四", 20, "F", 1235, 1),
Person2("王五", 26, "M", 1235, 1),
Person2("小明", 25, "F", 1225, 1),
Person2("小花", 24, "F", 1425, 1),
Person2("小华", 23, "M", 1215, 1),
Person2("gerry", 22, "F", 1415, 2),
Person2("tom", 21, "F", 1855, 2),
Person2("lili", 20, "F", 1455, 2),
Person2("莉莉", 18, "M", 1635, 2)
))
val rdd2 = sc.parallelize(Array(
Dept(1, "部门1"),
Dept(2, "部门2")
))
val personDataFrame = rdd1.toDF()
val deptDataFrame = rdd2.toDF()
// ====DSL==================================
// cache 多次使用的DataFrame
personDataFrame.cache()
deptDataFrame.cache()
// select语法
println("----select-----")
personDataFrame.select("name", "age", "sex").show()
personDataFrame.select($"name", $"age", $"sex".as("sex1")).show()
personDataFrame.select(col("name").as("name1"), col("age").as("age1"), col("sex")).show()
personDataFrame.selectExpr("name", "age", "sex", "sexToNum(sex) as sex_num").show()
// where/filter
println("------where/filter-------")
personDataFrame.where("age > 22").where("sex = 'M'").where("deptNo = 1").show()
personDataFrame.where("age > 20 AND sex='M' AND deptNo = 1").show()
personDataFrame.where($"age" > 20 && $"sex" === "M" && $"deptNo" === 1).show()
personDataFrame.where($"age" > 20 && $"deptNo" === 1 && ($"sex" !== "F")).show()
// sort
println("-----------sort--------------")
// 全局排序
personDataFrame.sort("salary").select("name", "salary").show()
personDataFrame.sort($"salary".desc).select("name", "salary", "age").show()
personDataFrame.sort($"salary".desc, $"age".asc).select("name", "salary", "age").show()
personDataFrame.orderBy($"salary".desc, $"age".asc).select("name", "salary", "age").show()
personDataFrame
.repartition(5)
.orderBy($"salary".desc, $"age")
.select("name", "salary", "age").show()
// 局部排序(按照分区进行排序)
personDataFrame
.repartition(5)
.sortWithinPartitions($"salary".desc, $"age".asc)
.select("name", "salary", "age")
.show()
// group by
personDataFrame
.groupBy("sex")
.agg(
"salary" -> "avg",
"salary" -> "sum"
)
.show()
personDataFrame
.groupBy("sex")
.agg(
avg("salary").as("avg_salary"),
min("salary").as("min_salary"),
count(lit(1)).as("cnt")
)
.show()
personDataFrame
.groupBy("sex")
.agg(
"salary" -> "self_avg"
)
.show()
// limit
personDataFrame.limit(2).show()
// ==join===============
println("----------join--------------------")
personDataFrame.join(deptDataFrame).show()
// 无法判断deptNo属于哪个DataFrame的会报错
// personDataFrame.join(deptDataFrame, $"deptNo" === $"deptNo")
personDataFrame.join(deptDataFrame.toDF("col1", "deptName"), $"deptNo" === $"col1", "inner").show()
personDataFrame.join(deptDataFrame, "deptNo").show()
personDataFrame
.join(deptDataFrame.toDF("deptNo", "name"), Seq("deptNo"), "left_outer")
.toDF("no", "name", "age", "sex", "sal", "dname")
.show()
// ===窗口分析函数=======必须要是是使用HiveContext对象
/** *
* 按照deptNo分组,组内按照salary进行排序,获取每个部门前3个销售额的用户信息
* select *
* from
* (select *, ROW_NUMBER() OVER (Partition by deptNo Order by salary desc) as rnk
* from person) as tmp
* where tmp.rnk <= 3
*/
val w = Window.partitionBy("deptNo").orderBy($"salary".desc, $"age".asc)
personDataFrame
.select(
$"name", $"age", $"deptNo", $"salary",
row_number().over(w).as("rnk")
)
.where("rnk <= 3")
.show()
// 清除缓存
personDataFrame.unpersist()
personDataFrame.unpersist()
}
}
————————————————
版权声明:本文为CSDN博主「weixin_40652340」的原创文章,遵循CC 4.0 by-sa版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_40652340/article/details/79207455