4 IDEA环境应用

4 IDEA环境应用

spark shell仅在测试和验证我们的程序时使用的较多,在生产环境中,通常会在IDE中编制程序,然后打成jar包,然后提交到集群,最常用的是创建一个Maven项目,利用Maven来管理jar包的依赖。

4.1 IDEA中编写WordCount程序

1)创建一个Maven项目WordCount并导入依赖

<dependencies>
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-core_2.11</artifactId>
        <version>2.1.1</version>
    </dependency>
</dependencies>
<build>
        <finalName>WordCount</finalName>
        <plugins>
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <version>3.2.2</version>
                <executions>
                    <execution>
                        <goals>
                            <goal>compile</goal>
                            <goal>testCompile</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-assembly-plugin</artifactId>
                <version>3.0.0</version>
                <configuration>
                    <archive>
                        <manifest>
                            <mainClass>WordCount(修改)</mainClass>
                        </manifest>
                    </archive>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
</build>

2)编写代码

package com.atguigu

import org.apache.spark.{SparkConf, SparkContext}

object WordCount{

  def main(args: Array[String]): Unit = {

//创建SparkConf并设置App名称
    val conf = new SparkConf().setAppName("WC")

//创建SparkContext,该对象是提交Spark App的入口
    val sc = new SparkContext(conf)

    //使用sc创建RDD并执行相应的transformation和action
    sc.textFile(args(0)).flatMap(_.split(" ")).map((_, 1)).reduceByKey(_+_, 1).sortBy(_._2, false).saveAsTextFile(args(1))

    sc.stop()
  }
}

3)打包到集群测试

bin/spark-submit \

--class WordCount \

--master spark://hadoop102:7077 \

WordCount.jar \

/word.txt \

/out

4.2 本地调试

本地Spark程序调试需要使用local提交模式,即将本机当做运行环境,MasterWorker都为本机。运行时直接加断点调试即可。如下:

 

创建SparkConf的时候设置额外属性,表明本地执行:

val conf = new SparkConf().setAppName("WC").setMaster("local[*]")

 

    如果本机操作系统是windows,如果在程序中使用了hadoop相关的东西,比如写入文件到HDFS,则会遇到如下异常:

出现这个问题的原因并不是程序的错误,而是用到了hadoop相关的服务,解决办法是将附加里面的hadoop-common-bin-2.7.3-x64.zip解压到任意目录

IDEA中配置Run Configuration,添加HADOOP_HOME变量

4.3 远程调试

通过IDEA进行远程调试,主要是将IDEA作为Driver来提交应用程序,配置过程如下:

修改sparkConf,添加最终需要运行的JarDriver程序的地址,并设置Master的提交地址:

val conf = new SparkConf().setAppName("WC")

.setMaster("spark://hadoop102:7077")
.setJars(List("E:\\SparkIDEA\\spark_test\\target\\WordCount.jar"))

然后加入断点,直接调试即可:

 

 

本地直接运行

package com.briup.core

import org.apache.spark.{SparkConf, SparkContext}

object WordCount {
  def main(args: Array[String]): Unit = {
    //1 获取配置SparkConf
    // spark-submit master name 在命令行里设置
    // 右键运行 master name 代码配置
    val conf = new SparkConf()
      .setMaster("local[*]")
      .setAppName("dzy_wordCount")

    //2 SparkContext
    val sc= new SparkContext(conf)

    //3 RDD
    val lines = sc.textFile("file:///opt/software/spark/README.md")

    //4 执行操作  flatten
    //    Mapper    ----> shuffle ---->Reducer
    val rdd1 = lines.flatMap(_.split(" "))
                    .groupBy(x => x)
                    .mapValues(x => x.size)

    //* 序列化执行结果
    rdd1.foreach(println)
    rdd1.saveAsTextFile("file:///home/dengzhiyong/Documents/IDEA_workspace/IdeaProjects/ECJTU_Spack_Ecosphere/Spark/src/main/scala/com/briup/core/result")

    //5 关闭sc
    sc.stop()
  }
}

  

 

posted @ 2019-08-04 02:04  DiYong  阅读(141)  评论(0编辑  收藏  举报